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ABSTRACT

This article is an introduction to a new approach to first principles electronic structure calculation.

The starting point is the Hartree-Fock-Roothaan equation, in which molecular integrals are

approximated by polynomials by way of Taylor expansion with respect to atomic coordinates and other

variables. It leads to a set of polynomial equations whose solutions are eigenstate, which is designated

as algebraic molecular orbital equation. Symbolic computation, especially, Gröbner bases theory,

enables us to rewrite the polynomial equations into more trimmed and tractable forms with identical

roots, from which we can unravel the relationship between physical parameters (wave function, atomic

coordinates, and others) and numerically evaluate them one by one in order. Furthermore, this method

is a unified way to solve the electronic structure calculation, the optimization of physical parameters,

and the inverse problem as a forward problem.
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INTRODUCTION

This article is intended as an introduction of a new approach to first principles electronic structure

calculation, by way of symbolic-numeric computation.1

There is a wide variety of electronic structure calculation cooperating with symbolic computation.

The main purpose of the latter is to play an auxiliary role (but not without importance) to the former.

In the field of quantum physics,1–9 researchers sometimes have to handle complicated mathematical

expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive

use of computers, namely, symbolic computation.10– 16 Examples of this can be seen in various topics:

atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering,

lattice spin models and so on.16 How to obtain molecular integrals analytically or how to manipulate

complex formulas in many body interactions, is one such problem. In the former, when one uses

special atomic basis for a specific purpose, to express the integrals by the combination of already

known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number

of creation and annihilation operators in a suitable order and calculate the analytical expectation

value. It is usual that a quantitative and massive computation follows a symbolic one; for the

convenience of the numerical computation, it is necessary to reduce a complicated analytic expression

into a tractable and computable form. This is the main motive for the introduction of the symbolic

computation as a forerunner of the numerical one and their collaboration has won considerable

successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic

computation in the present work is not limited to indirect and auxiliary part to the numerical

computation. The present work can be applicable to a direct and quantitative estimation of the

electronic structure, skipping conventional computational methods.

The basic equation of the first principle electronic structure calculations is the Hartree-Fock or the

Kohn-Sham equation, derived from the minimum condition of the energy functional in the

electron-nuclei system,1–3 which is expressed as follows.
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 !
fiðrÞ ¼ EifiðrÞ: ðI:1Þ

The second term in the parse of the left side is the potential from nuclei with charge Za. The third term is

the Coulomb potential generated by the charge distribution r. The fourth term V exc is the quantum

dynamical interaction operating in the many-electron system, called the “exchange and correlation”.

It is rewritten into the matrix eigenvalue problem, by adopting wavefunctions expanded by a certain

localized basis set. This is Hartree-Fock-Roothaan (HFR) equation in Equation (I.2).

Hð{R}; {C}; {z}; {Q}ÞCð{R}; {z}; {Q}Þ ¼ Sð{R}; {z}; {Q}ÞCð{R}; {z}; {Q}Þ Eð{z}; {Q}Þ: ðI:2Þ

H is the Hamiltonian matrix, S is the overlap one, c is the wavefunction (the coefficients of the linear

combination), and E is the eigenvalue. The variables {R} are the positions of the nuclei, {z} are the

orbital exponents that describe the special expansion of the localized base function, and {Q} are the

quantum numbers. The analytic forms of localized atomic bases are expressed by these three kinds

of parameters, namely, the atomic position, the orbital exponent and quantum numbers. The HFR

equation can be expressed by multi-valuable analytic functions, whose variables are {R}, {z} and {Q}.

It contains transcendental functions of several kinds. This is because we conventionally adopt

analytical base, such as Slater type orbital (STO) or Gaussian type orbital (GTO), to construct

one-electron and two-electron molecular integrals, whose concrete expression can be derived

from symbolic manipulation4–9 by means of computer algebra systems.10,11

The use of analytic basis in the HFR equation is effective in the achievement of precision in numerical

computation, but causes some difficulty in the mathematical operations to the equation itself, because

the analytic expression is, in general, very complicated. We, however, can rewrite and approximate

the HFR equation using polynomials in order to obtain much simpler expressions. The concept of

polynomial approximation to the HFR equation was promoted by Yasui.6–9 The equation becomes

the set of algebraic polynomial equations expressed by atomic coordinates, orbital exponents, and

quantum numbers. Based on this, we will able to unravel the relationship among parameters and
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clarify their dependence. This idea is be outlined here. We express a molecular orbital by the linear

combination of atomic orbitals (LCAO),

fk ¼
Xatom
a

Xbase
i

Ck
aixðRa; {ni; li;mi}; zi; r; u;fÞ: ðI:3Þ

The variables Ra; {ni; li;mi}; zi are the atomic position, quantum numbers and the orbital exponents,

respectively. The variables r,u,f are of the atom centered coordinates. The key components to the molecular

orbital calculations aremolecular integrals, which are thematrix elements of the each part of the Hamiltonian

operator obtained by the use of LCAO, such as, kinetic energy, nuclear and electronic potentials and

overlapping integrals. The approximation to molecular integrals is obtained by Taylor expansion;

fðxÞ ¼
X1
p¼0

1

p!

Xp
k

p

k

 !
ðx2 x0Þ

p2k fðpÞðx0Þx
p ø

XN
i¼0

Aiðx0Þx
i: ðI:4Þ

For example, the two-centered overlapping integral is defined as,

Sab
AB ;

ð
xðRA; {na; la;ma}; za; rA; uA;fAÞxðRB; {nb; lb;mb}; zb; rB; uB;fBÞdr

3: ðI:5Þ

The integration generates an analytic function of two orbital exponents and inter-atomic distance R.

The polynomial approximation is given as,

Sab
ABðza; zb; RÞ ø

X
Pa;Pb;PR

Að{na; la;ma}A; {nb; lb;mb}BÞPa;Pb;Pcz
pa
a z

pb
b RPR : ðI:6Þ

Other molecular integrals can be expressed in a similar way. Once the molecular integrals are approximated

as polynomials, the HFR equation and the energy functional take polynomial expressions. The orbital

exponents and atomic coordinates can equivalently be regarded as parameters in the calculus of variations,

as well as LCAO coefficients. It will be adequate to call this multi-variable polynomial expression “algebraic

molecular orbital equation,” or “algebraic molecular orbital theory.” It is not necessary to regard those

equations as pure numerical eigenvalue problems. Those equations are a set of polynomials, to which

both symbolic manipulations and numerical solving are applicable.

One should note some inconvenience in conventional methods, which may be surmounted by

“algebraic molecular orbital equation.” The standard electronic structure calculation is a “forward

problem”. We suppose the material structure, execute the electronic structure calculations, and optimize

the structure so that the energy functional will be minimized. The foundation for this treatment is so-called

“the adiabatic approximation”, which enables us to separate the dynamics of the nuclei andwavefunctions

into two independent models, ruled by classical and quantum dynamics, respectively. The conventional

method iterates two alternative computational phases, one of which are the optimization for the

wavefunctions and the other for the positions of the nuclei. It is believed that this way is numerically stable.

But, in view of effectiveness, this may be a lengthy and indirect, which also results in some inefficiency.

Owing to the separation of the degrees of freedom of wavefunctions and nuclei, it is difficult for the

conventional method to cope with cases where the dynamics of nuclei and wavefunctions are strongly

coupled with each other. Meanwhile, the “inverse problem” will be to search the material structure, which

shows the desirable electronic properties. To do this, the conventional method must be trial and error.

At first we suppose the material structure to evaluate the electronic properties, and, by adjusting the

structure, we search the direction in which the desired properties will be obtained. We have to solve

forward problems repeatedly to obtain the solution of the inverse problems. The reason to this is as

follows. In the conventional methods, the computation has the fixed order of numerical procedures,

consisted from the eigenvalue solution, the self-consistent-field calculation and the relaxation of atomic

structure, which is implemented as nested loops of independent phases of the optimizations. The

unknown parameters are computed from inner loops to outer ones in order. The conventional method is

obliged to determine unknown variables in a fixed order in all cases. As we will see later, the concept

“algebraic molecular orbital equation” suggests a solution strategy to this circumstance.

METHOD

In view of these circumstances, we propose the following method, named “Symbolic-numeric ab-initio

molecular dynamics and molecular orbital method”.1

It is summarized as follows. “At first, HFR equation is approximated as a set of multi-variable

polynomial Equations (Algebraic Molecular Orbital Equation), and by symbolic computation, it is
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rewritten into a certain form more convenient for numerical treatment. The eigenstates are evaluated by

the root finding. using symbolic-numeric procedure.”

The question at present is how to obtain the numerical solutions of the equations after the

polynomial approximation and derive significant information. For the purpose of rewriting and solving

a set of polynomial equations, several types of hybrid techniques, so-called “symbolic-numeric

solving”, are proposed. In them, the symbolic manipulation is applied as a preconditioning toward the

set of equations to be solved. The equations are transformed into others, which have the same roots, to

which the numerical computation will be easy and stable. From the form of the transformed equations,

the character of the solution, such as, the existence and the geometrical structure, can be determined.

Then the solving process is passed over to the numerical one. For the mathematical background,

see Möller and other authors12–15 A review of applications of symbolic computations in the field of

computational chemistry is given in Barnett et al.16

In the present work, we make use of symbolic-numeric solving and rewriting the HFR equation,

approximated as a set of polynomial equations. As a strategy, the algorithm of the “decomposition of

polynomial equations into triangular sets” is applied.12,13 In this algorithm, the following

transformations are applied.

The starting equations f1, . . . ,fn
f 1ðx1; x2; . . . ; xnÞ ¼ 0

f 2ðx1; x2; . . . ; xnÞ ¼ 0

..

.

f nðx1; x2; . . . ; xnÞ ¼ 0

ðM:1Þ

! Gröbner bases with lexicographic order of f1, . . . ,fn, {gi}

g1ðx1Þ ¼ 0

..

.

g2_1ðx1; x2Þ ¼ 0

..

.

g2_mð2Þðx1; x2Þ ¼ 0

g3_1ðx1; x2; x3Þ ¼ 0

..

.

gn_1ðx1; . . . ; xnÞ ¼ 0

..

.

gn_mðnÞðx1; . . . ; xnÞ ¼ 0

ðM:2Þ

! Triangular sets of polynomials {ti}, each of which is given as this.

t1ðx1Þ ¼ 0

t2ðx1; x2Þ ¼ 0

..

.

tnðx1; x2; . . . ; xnÞ ¼ 0

ðM:3Þ

The algorithm in ref .12 and 13, at first, generates the Gröbner bases {gi} with the lexicographic

monomial order from the starting set of equations f1, . . . ,fn. The generated Gröbner bases have roots

identical to those of f1, . . . ,fn, and take forms which guarantee an easier numerical solving. The Gröbner

bases are a set of polynomials in which the number of unknowns of each entry increases in order, from

polynomials with fewer valuables to ones with more. However, the total number of polynomials in the

Gröbner bases may grow more than that of the starting polynomials. Though we can search the root at

this stage, we furthermore apply the decomposition to the Gröbner bases and obtain several

“triangular” systems of equations {t1, . . . ,tn}. The first entry of which has one unknown x1, the second

has two unknowns x1, x2, the third three unknowns, etc, until, the last n-th has n-unknowns x1, x2, . . . , xn
by turns. In order to obtain all roots of the starting equations f1, . . . ,fn, we need to construct several sets
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of triangular sets of equations, all of which can be generated by the algorithm in ref .12 or 13. A single

triangular system has fewer numbers of entries than that in the Gröbner bases before the

transformation. This makes the numerical procedure easier. Once we can obtain the triangular systems

of the equations, we can evaluate each unknown one by one. In the numerical solution, only a Quasi-

Newton-like method, or its kindred for one variable, is necessary.

We can execute another type of the symbolic numerical solving. The foundation to this is the theorem

of Stickelberger. As above, we regard the HFR equations as the set of polynomial equations expressed

by unknowns X1, . . . , Xm. The set of polynomial equations constructs a zero-dimensional ideal I in the

polynomial ring R ¼ k [X1, . . . , Xm], whose zeros corresponds to a residue ring A ¼ R/I. Here k is the

coefficient field, which, in our case, is the rational number field or the real number field. The ring A is a

finite dimensional vector space over k, whose bases are expressed by monomials of x1, x2, . . . ,xm.

Thus, the multiplication by x1, x2, . . . , xm on each base results in the linear combination of the bases in

A. The product operations by x1, x2, . . . , xm are expressed as linear transformation matrices mh (h ¼ x1,

x2, . . . , xm). The bases in the residue ring A ¼ R/I and the transformation matrices are obtained by

means of the Gröbner bases technique. The theorem of Stickelberger asserts that there is a one-to-one

correspondence between an eigenvector yj of the matrix mh and the zero point j ¼ (j1, . . . ,jm) of the

ideal I. The correspondence is given by

mxi�y j ¼ ji�yj: ðM:4Þ

The eigenvector yj is common with all of mxi
. (For details, see Sottile et al.14 p. 101–130,

“From Enumerative Geometry to Solving Systems of Polynomial Equations”, by Frank Sottile.) The

numerical calculations for the zeros j ¼ (j1, . . . ,jm) are executed as follows. We choose one xi and

prepare mxi
. The secular equation gives us the eigenvector yj. If we multiply mxj

( j – i) with yj, we can

evaluate jj( j – i). Thus all values of j ¼ (j1, . . . ,jm) can be obtained.

The energy functional, the normalization conditions for wavefunctions, and the HFR equation are

polynomials with respect to LCAO (Linear Combination of Atomic Orbitals) coefficients and

eigenvalues. Those equations are constructed from molecular integrals, which are in general,

expressed as analytical functions of the included parameters, accordingly not being polynomials.

Thus, the molecular integrals are replaced by approximations of polynomials of the included

parameters. This means we can construct a set of polynomial equations, including not only

wavefunctions and eigenvalues, but also the parameters for molecular integrals, i.e. the molecular

orbital algebraic equation. If extra constraint conditions should be cast upon the HFR equation, we can

prepare the polynomial equations for the constraints and add them into the set of polynomial

equations. If the numerical coefficients are rationalized, we can avoid the lowering of the precision

through the symbolic manipulation by means of arbitrary precision calculations of rational numbers.

One of the merits in this treatment is as follows. In the conventional method, the input data is

the atomic structure and the output is the electronic structure. By contrast, in the present method,

the possible input data are not limited to the atomic structures. We can select arbitrary parameters

in the HFR equation and set them as the input. If the problem to be solved is properly

established, we can compute other unknown variables properly. As to the properness of the problem,

i.e., the existence of the roots of the set of polynomial equations, it can be judged from the ideal theory

in mathematics on the condition whether its Gröbner bases have zero points set or not.

COMPUTATIONAL FLOW

The task flow is listed as follows.

1. Compute the analytic formula of the energy functional and the constraint conditions whose

variables are eigenvalues, LCAO coefficients in wavefunctions, atomic coordinates, orbital

exponents in molecular integrals and so on. Those analytic expressions are polynomials with

respect to LCAO coefficients and eigenvalues, while the expressions are not polynomials with

respect to other parameters, such as atomic coordinates and orbital exponents. Molecular integrals

are rewritten by approximating polynomials with respect to the included parameters. For example,

by choosing a certain point in the range of a parameter and applying the Taylor expansion around it,

we can obtain the polynomial approximation. By rationalizing the numerical coefficients, we can

prevent the lowering of the precision through the afterward symbolic manipulation.

2. Prepare the set of the equations to be solved, by way of the symbolic derivative, which is the

minimization of the energy functional approximated by the polynomial.
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3. By means of the symbolic manipulation, the above equations are transformed into others having

the same roots. The initial equations are, at first, transformed into the Gröbner bases, by which we

can check the existence of the solution. If the solutions are the set of isolated points, we can

decompose the Gröbner bases into the triangular expression. There is an alternative way; by means

of Stickelberger’s theorem, the search for the solution is replaced by an eigenvalue problem.

4. By numerically solving the equations, the roots are computed and afford us the electronic structure

and important information.

RESULTS

Several examples are demonstrated in this section. The units are given in atomic units. As an object, we

choose the hydrogen molecule. Though we only show the examples of H2 here, which is the simplest

molecule, the applications of the present method are not limited to two-electron or two-atomic

systems. The reason why we choose H2 is as follows. Though this system is simple, it includes all kinds

of quantum interactions operating in realistic materials and can be assumed as a miniature of general

many-electron and polyatomic systems.

To construct the algebraic molecular orbital equation

At first, we will show how to construct the algebraic molecular orbital equation and the possibility of the

Self-Consistent Field (SCF) calculations. The molecular integrals needed here are generated by STO

base. The energy functional is the analytic equation of the one-centered molecular integrals at

hydrogen A and B, the two-centered molecular integrals and the LCAO coefficients of the

wavefunctions. As the expression of the inter-atomic distance R, the molecular integrals contain

transcendental functions. One of the two-centered molecular integrals is shown in (R.1).

½1sðAÞ1sðAÞj1sðBÞ1sðBÞ�¼

ðð
drdr0

f1sðr2RA;zaÞf
1sðr2RA;zbÞf

1sðr02RB;zcÞf
1sðr02RB;zdÞ

jr2r0j

¼
64za3=2 zb3=2 zc3=2 zd3=2

RðzaþzbÞ3ðzcþzdÞ3

2
32 za3=2 zb3=2ðzaþzbÞzc3=2 zd3=2

ERðzcþzdÞðzaþzb2zc2zdÞ2ðzcþzdÞ2ðzaþzbþzcþzdÞ2

2
32 za3=2zb3=2zc3=2zd3=2ðzcþzdÞ

ERðzaþzbÞðzaþzbÞ2ðzaþzb2zc2zdÞ2ðzaþzbþzcþzdÞ2

2
64za3=2 zb3=2 zc3=2 zd3=2ðzcþzdÞð3za2þ6za zbþ3zc222zc zd2zd2Þ

ERðzaþzbÞRðzaþzbÞ3ðzaþzb2zc2zdÞ3ðzaþzbþzcþzdÞ3

þ
64za3=2 zb3=2ðzaþ zcÞzc3=2 zd3=2ð2za222za zb23zc2þ6zc zdþ3zd2Þ

ERðzcþzdÞRðzaþzb2zc2zdÞ3ðzcþzdÞ3ðzaþzbþzcþzdÞ3

ðR:1Þ

It is the two electron repulsion between 1s orbitals and classified as “Coulombic type”, denoted as

[1s(A)1s(B)j1s(A)1s(B)]. Here the notation “1s (A)” and “1s (B)” meaning the atomic orbitals centered on

atoms A and B. The Slater orbital takes a form f1sðr; zÞ ¼ z3=2

p1=2 e
2zr . There are other repulsion integrals,

classified as the “exchange type” [1s(A)1s(B)j1s(A)1s(B)] and the “hybrid type” [1s(A)1s(A)j1s(A)1s(B)]. In

general, the molecular integrals have more complicated expressions than (R.1). If STO is used, these

integrals take more lengthy expressions, including transcendental functions, such as exponentials or

exponential integrations, and infinite series summations.5 In spite of this complicacy, we can treat them

easily after the symbolic processing, by approximating them as finite degree polynomials by means of

the Taylor expansion. It is noted here that the STO base can describe the physical property of the

localized atomic wavefunction more precisely than by GTO (Gaussian Type Orbital) base, both in the

neighborhood of the nucleus and in the remote region from it. Thus, the STO base becomes more

advantageous for the purpose of expressing the molecular equations as the polynomials of the atomic

coordinates. This is the reason why STO is adopted here. However, the following recipes are also

applicable to the GTO calculations, and possibly, to semi-empirical calculations, such as AM1 (Austine

Model 1)17 and PM3 (Parameterized Model number 3),18 or tight-binding model, where the matrix

elements are given as analytic formulas.
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As an example of a forward problem in the first principles molecular dynamics, the optimization of

the structure (the distance between two hydrogen atoms) and the UHF electronic structure calculation

are simultaneously executed.

We execute the Unrestricted Hartree-Fock (UHF) calculations in which the trial wavefunctions for

up- and down-spins are defined as in (R.2) and (R.3). The corresponding eigenvalues are denoted as ev

and ew. It is noted here: these trial functions with the bases of the orbital exponent 1 are too primitive

to assure good agreements with experiments: for accuracy, we must optimize the orbital exponent to a

suitable value. It is only to reduce the computational cost in the symbolic computation that we adopt

such primitive trial functions. Here, the positions of hydrogen A and B are denoted as RA and RB. The

inter-atomic distance is r ¼ RA 2 RB. We use the notation, such as XA ¼ jx 2 RAj and XB ¼ jx 2 RBj.

fupðxÞ ¼ ða exp ð2xAÞ þ b exp ð2xBÞÞ=
ffiffiffiffi
p

p
ðR:2Þ

fdownðxÞ ¼ ðc exp ð2xAÞ þ d exp ð2xBÞÞ=
ffiffiffiffi
p

p
ðR:3Þ

The energy functional is transformed into the polynomial form by way of the fourth order Taylor

expansion of the inter-atomic distance r, centered at the position of R0 ¼ 7/5 atomic unit. The functional is

generated in a standard way of molecular orbital theory, which is the total energy of the electron-nuclei

system (given in the atomic units) with the constraint conditionof the ortho-normality of thewavefunctions.

The Lagrange multipliers are eigenvalues. The coefficients of real numbers are truncated to third decimal

places and approximated as rational numbers, as is shown in (R.4). The LCAO coefficients for the up-spin

electron are (a,b), (c,d) are those for the down-spin electron, ev is the eigenvalues of the up-spin electron,

ew is that of the down-spin electron and r is the inter-atomic distance. It is rather a rough approximation

to use numerical coefficients truncated to third decimal places, which causes the computational error

(the order of a few percents) by the present method, compared to the conventional way with the double

precision calculation. This approximation is only intended to reduce the computational cost in the symbolic

processing. In this sense, examples in this section are mock-ups for realistic calculations, the aim of which

is to illustrate the application of the present method, aside from the accuracy.

V½{fiðjÞ; the occupiedorbital i; j ; ðr;sspinÞ}�

¼
X
i

ð
djfiðjÞ 2

1

2
72 þ

X
a

Za
jr2 Raj

 !
fiðjÞ

þ
1

2

X
i; j

ðð
djdj 0 fiðjÞfiðjÞfjðj

0Þfjðj
0Þ

jr2 r0j

2
1

2

X
i; j

ðð
djdj 0 fiðjÞfjðjÞfjðj

0Þfiðj
0Þ

jr2 r0j
þ

1

2

X
a;bða–bÞ

ZaZb
jRa 2 Rbj

2
X
i; j

lij

ð
djfiðjÞfjðjÞ2 dij

� �
ðR:4Þ

+

V ¼ ð35712 1580*a^22 3075*a*b2 1580*b^22 1580* c^2þ 625*a^2* c^2þ

1243*a*b* c^2þ 620*b^2* c^22 3075* c*dþ 1243*a^2* c*dþ 2506*a*b* c*dþ

1243*b^2* c*d2 1580*d^2þ 620*a^2*d^2þ 1243*a*b*d^2þ 625*b^2*d^2þ 1000*ev2

1000*a^2*ev2 1986*a*b*ev2 1000*b^2*evþ 1000*ew2 1000* c^2*ew2

1986* c*d*ew2 1000*d^2*ew2 5102* r þ 332*a^2* r þ 284*a*b* r þ 332*b^2* r þ

332* c^2* r þ 43*a*b* c^2* r þ 20*b^2* c^2* r þ 284* c*d* r þ 43*a^2* c*d* r þ

80*a*b* c*d* r þ 43*b^2* c*d* r þ 332*d^2* r þ 20*a^2*d^2* r þ 43*a*b*d^2* r2

63*a*b*ev* r2 63* c*d*ew* r þ 3644* r^2þ 75*a^2* r^2þ 724*a*b* r^2þ 75*b^2* r^2þ

75* c^2* r^22 401*a*b* c^2* r^22 124*b^2* c^2* r^2þ 724* c*d* r^22

401*a^2* c*d* r^22 1372*a*b* c*d* r^22 401*b^2* c*d* r^2þ 75*d^2* r^22

124*a^2*d^2* r^22 401*a*b*d^2* r^2þ 458*a*b*ev* r^2þ 458* c*d*ew* r^22

1301* r^32 69*a^2* r^32 303*a*b* r^32 69*b^2* r^32 69* c^2* r^3þ

146*a*b* c^2* r^3þ 42*b^2* c^2* r^32 303* c*d* r^3þ 146*a^2* c*d* r^3þ

618*a*b* c*d* r^3þ 146*b^2* c*d* r^32 69*d^2* r^3þ 42*a^2*d^2* r^3þ

146*a*b*d^2* r^32 139*a*b*ev* r^32 139* c*d*ew* r^3þ 185* r^4þ 12*a^2* r^4þ
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39*a*b* r^4þ 12*b^2* r^4þ 12* c^2* r^42 17*a*b* c^2* r^42 4*b^2* c^2* r^4þ

39* c*d* r^42 17*a^2* c*d* r^42 86*a*b* c*d* r^42 17*b^2* c*d* r^4þ 12*d^2* r^42

4*a^2*d^2* r^42 17*a*b*d^2* r^4þ 13*a*b*ev* r^4þ 13* c*d*ew* r^4Þ=1000

The precision of this approximation should be checked initially. The values of the original energy

functional and the polynomial approximation at a ¼ b ¼ c ¼ d ¼ 1 and ev ¼ ew ¼ 0 are plotted in

Figure 1 as the function of inter-atomic distance. It shows sufficient agreement in the range of r ¼ 1–2

atomic unit. However, if the r goes out of this region, the polynomial approximation is not appropriate

and we must try another center of the expansion R0. By increasing the maximum degree of the

Taylor expansion, we can enlarge the range of r where the polynomial approximation is valid.

We can make use of the symmetry in H2 and express the wavefunctions as the linear combination

of the symmetric and asymmetric ones, as in (R.5) and (R.6).

fupðxÞ ¼ tð exp ð2xAÞ þ exp ð2xBÞÞ=
ffiffiffiffi
p

p
þ sð exp ð2xAÞ2 exp ð2xBÞÞ=

ffiffiffiffi
p

p
ðR:5Þ

fdownðxÞ ¼ uð exp ð2xAÞ þ exp ð2xBÞÞ=
ffiffiffiffi
p

p
þ vð exp ð2xAÞ2 exp ð2xBÞÞ=

ffiffiffiffi
p

p
ðR:6Þ

This is the transformation by (R.7).

a ¼ tþ s; b ¼ t2 s; c ¼ uþ v; d ¼ u2 v ðR:7Þ

Then, the HFR equation is given by the set of equations in (R.8), where (t, s) is the LCAO coefficient for

up-spin, (u, v) is that for down spin, ev is the eigenvalue for up spin, ew is that for down spin, and r is

the inter-atomic distance.

1 ›V

›a
þ

›V

›b
¼ 0! ðR:8Þ

32* s*u* v* r^42 336* s*u* v* r^3þ 992* s*u* v* r^22 160* s*u* v* r þ 40* s*u* v2 324

* t*u^2* r^4þ 2572* t*u^2* r^32 6448* t*u^2* r^ 2þ 584* t*u^2* r þ 19936* t*u^2þ

156* t* v^2* r^42 1068* t* v^2* r^3þ 2248* t* v^2* r^22 80* t* v^2* r2 32* t* v^2

þ26* t*ev* r^42 278* t*ev* r^3þ 916* t*ev* r^22 126* t*ev* r2 7972* t*evþ 126* t* r
^42 882* t* r^3þ 1748* t* r^2þ 1896* t* r2 12470* t ¼ 0

2 ›V

›a
2

›V

›b
¼ 0

Figure 1. Shows the deviation between the exact energy functional V and its polynomial approximation,

jV(Taylor expansion) 2 V(Exact)j/jV(Exact)j v.s. the interatomic distance r, given in percentage.
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!156* s*u^2* r^42 1068* s*u^2* r^3þ 2248* s*u^2* r^22 80* s*u^2* r2 32* s*u^2

2 52* s* v^2* r^4þ 236* s* v^2* r^32 32* s* v^2* r^22 104* s* v^2* r þ 48* s* v^2

2 26* s*ev* r^4þ 278* s*ev* r^32 916* s*ev* r^2þ 126* s*ev* r2 28* s*ev2 30* s* r^4

þ 330* s* r^32 1148* s* r^2þ 760* s* r2 170* sþ 32* t*u* v* r^42 336* t*u* v* r^3

þ992* t*u* v* r^22 160* t*u* v* r þ 40* t*u* v ¼ 0

3 ›V

›c
þ

›V

›d
¼ 0

!156* s^2*u* r^42 1068* s^2*u* r^3þ 2248* s^2*u* r^22 80* s^2*u* r2 32* s^2*u

þ 32* * t* v* r^42 336* s* t* v* r^3þ 992* s* t* v* r^22 160* s* t* v* r þ 40* s* t* v

2 324* t^2*u* r^4þ 2572* t^2*u* r^32 6448* t^2*u* r^2þ 584* t^2*u* r þ 19936* t^2*u

þ 26*u*ew* r^42 278*u*ew* r^3þ 916*u*ew* r^22 126*u*ew* r2 7972*u*ew

þ126*u* r^42 882*u* r^3þ 1748*u* r^2þ 1896*u* r2 12470*u ¼ 0

4 ›V

›c
2

›V

›d
¼ 0

!2 52* s^2* v* r^4þ 236* s^2* v* r^32 32* s^2* v* r^22 104* s^2* v* r þ 48* s^2* v

þ 32* s* t*u* r^42 336* s* t*u* r^3þ 992* s* t*u* r^22 160* s* t*u* r þ 40* s* t*u

þ 156* t^2* v* r^42 1068* t^2* v* r^3þ 2248* t^2* v* r^22 80* t^2* v* r2 32* t^2* v

2 26* v*ew* r^4þ 278* v*ew* r^32 916* v*ew* r^2þ 126* v*ew* r2 28* v*ew

230* v* r^4þ 330* v* r^32 1148* v* r^2þ 760* v* r2 170* v ¼ 0

5
›V

›ðevÞ
¼ fupjfup

� �
2 1 ¼ 0

!2 13* s^2* r^4þ 139* s^2* r^32 458* s^2* r^2þ 63* s^2* r2 14* s^2þ 13* t^2* r^4

2139* t^2* r^3þ 458* t^2* r^22 63* t^2* r2 3986* t^2þ 1000 ¼ 0

6
›V

›ðewÞ
¼ f downjf downh i2 1 ¼ 0

!13*u^2* r^42 139*u^2* r^3þ 458*u^2* r^22 63*u^2* r2 3986*u^22 13* v^2* r^4

þ139* v^2* r^32 458* v^2* r^2þ 63* v^2* r2 14* v^2þ 1000 ¼ 0
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7
›V

›r
¼ 0

!312* s^2*u^2* r^32 1602* s^2*u^2* r^2þ 2248* s^2*u^2* r2 40* s^2*u^2

2 104* s^2* v^2* r^3þ 354* s^2* v^2* r^22 32* s^2* v^2* r2 52* s^2* v^2

2 52* s^2*ev* r^3þ 417* s^2*ev* r^22 916* s^2*ev* r þ 63* s^2*ev2 60* s^2* r^3

þ 495* s^2* r^22 1148* s^2* r þ 380* s^2þ 128* s* t*u* v* r^32 1008* s* t*u* v* r^2

þ 1984* s* t*u* v* r2 160* s* t*u* v2 648* t^2*u^2* r^3þ 3858* t^2*u^2* r^2

2 6448* t^2*u^2* r þ 292* t^2*u^2þ 312* t^2* v^2* r^32 1602* t^2* v^2* r^2

þ 2248* t^2* v^2* r2 40* t^2* v^2þ 52* t^2*ev* r^32 417* t^2*ev* r^2þ 916* t^2*ev* r

2 63* t^2*evþ 252* t^2* r^32 1323* t^2* r^2þ 1748* t^2* r þ 948* t^2þ 52*u^2*ew* r^3

2 417*u^2*ew* r^2þ 916*u^2*ew* r2 63*u^2*ewþ 252*u^2* r^32 1323*u^2* r^2

þ 1748*u^2* r þ 948*u^22 52* v^2*ew* r^3þ 417* v^2*ew* r^22 916* v^2*ew* r

þ 63* v^2*ew2 60* v^2* r^3þ 495* v^2* r^22 1148* v^2* r þ 380* v^2þ 740* r^3

23903* r^2þ 7288* r2 5102 ¼ 0

To solve the algebraic molecular orbital equation by symbolic-numeric computation

At first, we assume r ¼ 7/5 to see the possibility of actual first principles calculations. The entry as is

shown by ›V/›r ¼ 0 in (R.8) is replaced by (R.9).

5r 2 7 ¼ 0 ðR:9Þ

The lexicographic order Gröbner bases are shown in (R.10) with the monomial ordering of

s , t , u , v , ev , ew , r. (Hereafter this monomial ordering is kept in the following

computations.) In the entries of the Gröbner bases, those variables show themselves in the reverse

order of r, ew, ev, v, u, t, s, by turns. The relationships among those variables, which are ambiguous in

the expression of HFR equation, may be extracted there.

J½1� ¼ r2 1:4 ðR:10Þ

J½2� ¼ 0:000000000000000044923679950280179834153752545837120050869800531719*ew^6

þ 0:000000000000000083784847684948917991823061663879813241022968255965*ew^5

þ 0:000000000000000055224314065899427802789765894852689587104815167352*ew^4

þ 0:000000000000000014691161157734078517931578598749996418029499346849*ew^3

þ 0:0000000000000000011979351185242681597299140874114661346717404726834*ew^2

2 0:0000000000000000000083986996356237445246657340658569895849354776549449*ew

2 0:00000000000000000000037230409053155950263983522183691557632339096670694
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J½3� ¼ 0:00000000013962876535705715746622071381953097719892118070071*ev

þ 0:00000032173656936235047932064238004296019881075131225526*ew^5

þ 0:00000033291652477736005207182034309098081628696594819331*ew^4

þ 0:000000065891103236483021260956200510555934469425614980251*ew^3

2 0:0000000145021947963247304958954925854495404878708307549*ew^2

2 0:0000000025896639470303145276823808149265037630293022616944*ew

þ 0:000000000050819197513225881244353230913969686213591494118136

J½4� ¼ 0:0035337421249281116351414330877752843125543561935616* v*ew^4

þ 0:0021801710635532512041192523955501421176113052868825* v*ew^3

þ 0:00024683412076704120861849546037854544501562730166012* v*ew^2

2 0:0000014554651684258252511501850703694711773679621730295* v*ew

2 0:000000075203364912461984107689153015151456273923670860722* v

J½5� ¼ 0:0000000000000024691822639125973271970807854366500885805230838289* v^2

2 0:0000000000047190217319792339322638580120931177672487391351614*ew^5

2 0:0000000000074233725861437012556372485089134912758173742859754*ew^4

2 0:0000000000037044087563918384281802854504031102187085751576865*ew^3

2 0:00000000000055056937948011551503818116670012263028105621886299*ew^2

þ 0:0000000000000028924710974820572210152554673921687498485750622516*ew

2 0:0000000000000048519950027595085878960476168529106170995782184575

J½6� ¼ 0:00082444529533914000480121749252034857614275087163634*u*ew^4

þ 0:0015402471286109903529960234596133438365658562434456*u*ew^3

þ 0:0010186155101412674041097562139745242960275920262626*u*ew^2

þ 0:00027330147151793449108809755546973584926704784843595*u*ew

þ 0:000023152649811839442946188162579039171063101525686031*u

J½7� ¼ 0:15500652085373657278272155048840425269081666861422*u* v*ew^2

þ 0:096124486745923798453025086330083252761630136665135*u* v*ew

þ 0:011178119900970398824611330746954877639528183070683*u* v
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J½8� ¼ 0:0000000000000024691822639125973271970807854366500885805230838289*u^2

þ 0:00000000000066185419621956626251845869357753738900545315696192*ew^5

þ 0:0000000000010411459355962387028179380989969086880336301691908*ew^4

þ 0:00000000000051955227570060962098498758121689908883959384515193*ew^3

þ 0:000000000000077218685315543857629354030269499939648408016279623*ew^2

2 0:00000000000000040567605788697774347415485721964229236559337475379*ew

2 0:000000000000000023368741490554450106147082788613043426219204168902

J½9� ¼ 0:061970918133163216567183870035153503888001513514567* t*ew^4

þ 0:07786967298515361066019891920879105862334446468288* t*ew^3

þ 0:029529287545743808709620447245061926950863619513321* t*ew^2

þ 0:0032178375021467349512602370986204354827641359493411* t*ew

þ 0:000043456853031823070001289851734608283302642795735406* t

J½10� ¼ 0:05187413667297784999868866991024835274577850308566* t* v*ew^3

þ 0:032981416568891625365664312121206773685246825760142* t* v*ew^2

þ 0:0042447701517134049943862889216523608128280851170331* t* v*ew

þ 0:000058600461674134415884220932579569266784799169692295* t* v

J½11� ¼ 0:021791703354265359880262646937291988076821313685722* t*u*ew^3

þ 0:027041037783307743984286616783943211212082455989442* t*u*ew^2

þ 0:0099601988616932931997530597003570949767046400427524* t*u*ew

þ 0:00097550648450924773054739454162691886820402290190827* t*u

J½12� ¼ 0:0000000000000024691822639125973271970807854366500885805230838289* t^2

2 0:0000000000019897101060519652107395125478208499820923810270269*ew^5

2 0:0000000000017025570089756655535494287810528379598119659773602*ew^4

2 0:000000000000023483592200304199348742150925412718812994059865964*ew^3

þ 0:00000000000019673727812808485015748182293664380763085511692487*ew^2

þ 0:000000000000019786078457023833052592026181105821026866390535766*ew

2 0:00000000000000044219079290739404492269360637167466142801279295227

Page 12 of 21

Kikuchi. QScience Connect 2013:14



J½13� ¼ 0:056084833175126678686494811325106385425518369783604* s*ew^2

þ 0:034127439269225675895016122448171947840127214030889* s*ew

2 0:00066282300441698232705078773127382486945402101120119* s

2 0:040893885020249465973553191938478590309960079399638* t*u* v*ew

2 0:029010301971762382682320743416650072000710482565746* t*u* v

J½14� ¼ 0:021791703354265359880262646937291988076821313685722* s* v*ew

2 0:00041052862271488237533112188857801258113775891824163* s* v2 t*u*ew^2

2 0:91523243331780979308516147067869265402585316644918* t*u*ew

2 0:18279835739609284049315718860436264109118081404686* t*u

J½15� ¼ 0:082689621743132526006561521010847989515268982874621* s*u*ew

þ 0:05187413667297784999868866991024835274577850308566* s*uþ t* v*ew^2

þ 0:45088158483424862414602508768019029048144708971225* t* v*ew

þ 0:0068176823481038061179522681529012450074191772534997* t* v

J½16� ¼ 0:061970918133163216567183870035153503888001513514567* s*u* v

þ 7:54843402550665153673201812730961379367248454713989* t*ew^3

þ 9:2977596625794358858261233928027031703300204455612* t*ew^2

þ 2:93333692208165449675224101101090746851954196539922* t*ew

þ 0:043698233453379147442339681621264612101282386252875* t

J½17� ¼ 0:15500652085373657278272155048840425269081666861422* s* t2 u* v*ew

2 0:3100659450211982179038598636924866298895502223605*u* v

J½18�¼0:0000000000000024691822639125973271970807854366500885805230838289*s^2

þ0:000000000014186637003179206604978647501193712331871881329982*ew^5

þ0:000000000012139234851393709326934898047082480718477074921104*ew^4

þ0:00000000000016743805897305182765540212510939603762998421893102*ew^3

20:0000000000014027371833250135761788614236060225048185772213358*ew^2

20:00000000000014107477864862906344428789190998451814760012308984*ew

20:0000000000000018657929453315597187256856909000195939743454954377

The triangular decomposition to (R.10) is shown in (R.11), which involves five decomposed sets of

equations. One decomposed set includes seven entries, into each of which, the seven variables is

added one by one, with the order of r, ew, ev, v, u, t, s.
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½1� : ðR:11Þ

_[1] ¼ r 2 1.4

_[2] ¼ 0.082689621743132526006561521010847989515268982874621

*ew þ 0.05187413667297784999868866991024835274577850308566

_[3] ¼ 0.00000000013962876535705715746622071381953097719892118070071

*ev þ 0.0000000000021872894505215127104699976329395744001395648217513

_[4] ¼ v

_[5] ¼ 0.0000000000000024691822639125973271970807854366500885805230838289

*u
^2 2 0.000000000000000703872760120252538315069754210795

41060390364383305

_[6] ¼ t

_[7] ¼ 0.0000000000000024691822639125973271970807854366500885805230838289

*s
^2 2 0.0000000000000050186141759442129979160381879133091558873472043949

[2]:

_[1] ¼ r 2 1.4

_[2] ¼ ew 2 0.018838757853893431115706795065601087293579573640499

_[3] ¼ ev 2 0.018838757853893431115706795065601087293579573640499

_[4] ¼ v^2 2 2.03250049593012100694952569568426974696181825868366

_[5] ¼ u

_[6] ¼ t

_[7] ¼ 0.0000000000000024691822639125973271970807854366500885805230838289

*s
^2 2 0.0000000000000050186141759442129979160381879133091558873472043949

[3]:

_[1] ¼ r 2 1.4

_[2] ¼ ew^2 þ 0.620131890042396435807719727384973259779100444721

*ew þ 0.072113868754708844917382916961852739039135803532834

_[3] ¼ ev 2 ew

_[4] ¼ v^2 2 14.80995023428197133951905921507729315089177369253934

*ew 2 5.77765333933354558148702071632256029046854951290411

_[5] ¼ u^2 þ 2.07713129226284416025022121618132789954954241021854

*ew þ 0.52526673231711754540325634713814260954516716824085

_[6] ¼ t^2 þ 2.07713129226284416025022121618132789954954241021854

*ew þ 0.52526673231711754540325634713814260954516716824085

_[7] ¼ s þ 8.55670765807561749977207690461050758297371934231746

*t*u*v*ew þ 6.24834985328317561951025512690840116358160281553919*t*u*v

[4]:

_[1] ¼ r 2 1.4

_[2] ¼ ew þ 0.62075494398358690094167914213207711792332315380224

_[3] ¼ ev þ 0.62075494398358690094167914213207711792332315380224

_[4] ¼ v

_[5] ¼ u^2 2 0.28506310384917288370291954789447830487339321330884

_[6] ¼ t^2 2 0.28506310384917288370291954789447830487339321330884

_[7] ¼ s

[5]:

_[1] ¼ r 2 1.4

_[2] ¼ ew þ 0.015665034671961754863974784720813826678603082481373

_[3] ¼ ev þ 0.6273355178007699660610156274085545071738486487756

_[4] ¼ v^2 2 2.03250049593012100694952569568426974696181825868366

_[5] ¼ u

_[6] ¼ t^2 2 0.28506310384917288370291954789447830487339321330884

_[7] ¼ s

There are numerical coefficients that are very lengthy due to a problem in the algorithm in the

Gröbner bases generation.19–21 The computational procedure applies the Buchberger’s algorithm,

in which the addition, subtraction, multiplication and division are iterated to the polynomial system.
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In the intermediate expression through the computation, some polynomials with huge degrees may

arise, some of whose coefficients have extreme difference in the numerical scale compared to others.

This difference in the scale of coefficients will remain in the final result. To assure the numerical

accuracy, we must resort to the computations with arbitrary precision.

Though the solutions include complex ones, the physically admissible real solutions are shown in

Table 1. We obtain four combinations, where the two electrons of up- or down-spins are located the

symmetric or asymmetric wavefunctions. This means we obtain both the ground and the excited states.

Atomic and electronic structural optimization executed simultaneously

The inter-atomic distance, r, and the wavefunctions can be optimized at the same time, as is done in

Car-Parrinello method. In this case the inter-atomic distance, r, is an unknown to be determined, not a

fixed constant.

In order to obtain the ground state alone, we add Equation (R.12) into the equations in (R.8).

s ¼ v ¼ 0 ðR:12Þ

(This method is applicable to this example only. In general, the ground state is given as a solution

where the sum of the total occupied eigenvalue becomes a minimum of one. To specify the ground

state, it is enough to compute eigenvalues alone. For this purpose, in making the triangular

decomposition of the equations, we can prepare the equations including only eigenvalues as

unknowns. We have only to solve them). With this treatment, we can replace the equation to be solved

with a simpler one. The part of the equation including r is shown in Equation (R.13), whose real

solutions are shown in Table 2. To determine the inter-atomic distance, we have only to solve this part

of the equation.

½1� : ðR:13Þ

8942144364*r
^23 2 435341589039*r

^22 þ 9813157241157*r
^21 2 134458128500631

*r
^20 þ 1251986164962728*r

^19 2 8584760758387395*r
^18 þ 48176522279858253

*r
^17 2 254992901607817871*r

^16 þ 1360184656773665254*r
^15 2 6685412705413184235

*r
^14 þ 26848712421674517351*r

^13 2 82265960807423324641*r
^12 þ 185370

480318135661708*r
^11 2 295651827763150999108*r

^10 þ 307426892321213994312

*r
^9 2 148683667595876075980*r

^8 2 97338526988608612178*r
^7 þ 245772518836579791529

Table 1. Shows the solutions for Equations (R.11). The electron 1 and 2 lie in the up- and down- spin,
respectively.

Solution 1 Solution 2 Solution 3 Solution 4

s (the coefficient for electron 1) 0.00000 21.42566 0.00000 21.42566
t (the coefficient for electron 1) 20.53391 0.00000 20.53391 0.00000
u (the coefficient for electron 2) 20.53391 20.53391 0.00000 0.00000
v (the coefficient for electron 2) 20.53391 0.00000 21.42566 21.42566
ev (the eigenvalue for electron 1) 20.62075 20.01567 20.62734 0.01884
ew (the eigenvalue for electron 2) 20.62075 20.62734 20.01567 0.01884
r (the inter-atomic distance) 1.40000 1.40000 1.40000 1.40000
The total energy 21.09624 20.49115 20.49115 0.15503
electron1 symmetric orbital asymmetric orbital symmetric orbital asymmetric orbital
electron2 symmetric orbital symmetric orbital asymmetric orbital asymmetric orbital

Table 2. Shows the real solutions in the Equations (R.13).

Solution1 Solution2 Soultion3

r 21.812 1.652 6.010
ev 26.675 20.578 217.585
t 0.846 0.545 0.983
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*r
^6 2 200002425723099153061*r

^5 þ 47298638179277635737*r
^4 þ 46006348188804187952

*r
^3 2 41646082527529600720*r

^2 þ 13118922400543578496*r 2 1869747053688110592 ¼ 0

[2]:

10313892*r
^15 2 376866027*r

^14 þ 6245669754*r
^13 2 61144647973*r

^12 þ 387764699571

64699571*r
^11 2 1646957525797*r

^10 þ 4691411679124

*r
^9 2 8760215434992*r

^8 þ 10281598671237*r
^7 2 7316755042677*r

^6 þ 3784010771997

*r
^5 2 2194016637700*r

^4 2 299532295668*r
^3 þ 1482785614608*r

^2 2 746000940352

*r þ 36100845312 ¼ 0

[3]:

10313892*r
^15 2 376866027*r

^14 þ 6245669754*r
^13 2 61144647973*r

^12 þ 378596795571

96795571*r
^11 2 1405917509797*r

^10 þ 1917133055124

*r
^9 þ 9044372533008*r

^8 2 55118065080763*r
^7 þ 103464

030245323*r
^6 þ 92432281739997*r

^5 2 770797010005700*r
^4 þ 1063674493728332

*r
^3 þ 652030557238608*r

^2 2 2854269358708352*r þ 1954998898509312 ¼ 0

The solutions include the positive and negative real valued ones and the imaginary valued ones.

The admissible solutions (r . 0) are two in number, as in Table 2. However, the solution which lies

in the valid range of the Taylor expansion is only that of r , 1.6. The discrepancy between the solution

and the experimental value (r , 1.4) is due to the numerical error caused by the roughness of the

fourth order Taylor expansion and the rationalization of the numerical coefficients, being truncated.

In addition, it is also due to the not-optimized orbital exponent in the trial wavefunctions.

A recipe for an inverse problem

It is demonstrated here how to solve a related inverse problem. Suppose a problem, where the energy

difference between the occupied and the unoccupied states has a certain value; we should evaluate

the inter-atomic distance, r, at which the energy difference shows this value. This example is a

miniature of the inverse problem to find the lattice constants at which the band gap shows the desired

width. In this case, we execute Restricted-Hartree-Fock (RHF) calculations. The wavefunctions of the

occupied and the unoccupied are given in (R.14) and (R.15). The eigenvalues are denoted as eocc, eunocc.

f occðxÞ ¼ sð exp ð2xAÞ þ exp ð2xBÞÞ=
ffiffiffiffi
p

p
ðR:14Þ

f unoccðxÞ ¼ tð exp ð2xAÞ þ exp ð2xBÞÞ=
ffiffiffiffi
p

p
ðR:15Þ

The required equations are presented in (R.16), whose details are omitted here. The set of the

equations for the occupied state can be obtained the same way as was done with the example of the

UHF calculation. The orthogonality condition to the occupied and the unoccupied states is added to it.

›V
›s

¼ 0

›V
›t

¼ 0

›V
›ðeoccÞ

¼ foccjfocch i2 1 ¼ 0

funoccjfunocch i ¼ 1

foccjfunocch i ¼ 0

eocc 2 eunocc ¼ Egap

ðR:16Þ

For example, let us compute r, which gives Egap ¼ eunocc 2 eocc ¼ 0.9. The real solutions are those

at r ¼ 21.103, 0.307, 1.643, 3.958. The solution in the valid range of the Taylor expansion is only

that at r ¼ 1.643. The eigenvalues of the occupied and the unoccupied states are shown in Figure 2

as the function of R. It shows this result is accurate.

Then, in this case, is the structure stable? If we evaluate the inter-atomic forces, it can be easily

judged. On the other hand, with the view of symbolic-numeric solving, we can use the following

judgment. To do this, in the set of the equations in (R.16) we insert the condition of Equation (R.17),
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the minimization condition of the energy functional with respect to the inter-atomic distance, r.

›V

›r
¼ 0 ðR:17Þ

The computed Gröbner base is {1} (as a set of polynomials). It includes only a constant polynomial “1”.

The zeros of the Gröbner bases provide us with the solution to the equations. However, the term {1}, as

a polynomial, does not become zero. Thus, we can conclude that the supposed problem does not have

a solution with a stable structure.

The electronic and atomic structure optimization rewritten in a single matrix

eigenvalue problem

Here we show another numerical method by means of Stickelberger’s theorem. The electronic and

atomic structure optimization is rewritten in a single matrix eigenvalue problem. The example is the

optimization of inter-atomic distance in H2, where the RHF calculation is executed. The trial

wavefunction is given as Equation (R.18).

foccðxÞ ¼ tð exp ð2xAÞ þ exp ð2xBÞÞ=
ffiffiffiffi
p

p
ðR:18Þ

The eigenvalue is denoted as ev and the inter-atomic distance is r. The HFR equation becomes the set

of polynomials expressed by t, ev, and r. This set of equations, in the mathematical sense, constructs a

zero-dimensional ideal, I, in the polynomial ring A ¼ R[t, ev, r ], the zeros of which correspond to a

residue ring A/I. (R means the rational number field.) A/I is a finite-dimensional vector space over R.

Its base is represented by monomials of t, ev, and r, which are shown in (R.19).

b½1� ¼ t*ev* r^3 b½2� ¼ t* r^4 b½3� ¼ t^3*ev b½4� ¼ t*ev^3 b½5� ¼ t^3* r

b½6� ¼ t*ev^2* r b½7� ¼ t*ev* r^2 b½8� ¼ t* r^3 b½9� ¼ ev* r^3 b½10� ¼ r^4

b½11� ¼ t^3 b½12� ¼ t^2*ev b½13� ¼ t*ev^2 b½14� ¼ ev^3 b½15� ¼ t^2* r

b½16� ¼ t*ev* r b½17� ¼ ev^2* r b½18� ¼ t* r^2 b½19� ¼ ev* r^2 b½20� ¼ r^3

b½21� ¼ t^2 b½22� ¼ t*ev b½23� ¼ ev^2 b½24� ¼ t* r b½25� ¼ ev* r

b½26� ¼ r^2 b½27� ¼ t b½28� ¼ ev b½29� ¼ r b½30� ¼ 1

ðR:19Þ

Figure 2. Shows the dependence of occupied and unoccupied eigenvalues on the inter-atomic distance.

Eigenvalues of the occupied and the unoccupied states are shown by the real and broken lines, respectively.
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The transformation matrix corresponding to the multiplication by the variable, t, is shown in (R.20).

0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

2:46857 0:250358 0:000433932 20:519297 0:000905017 20:229989 0:400711 0:0592776 0: 0: 0:00037686 0: 20:0488928 0: 0: 0:0253457 0: 0:0106224 0:

2:85865 1:8302 0:010766 23:25489 0:00562066 0:195796 0:755874 0:513375 0: 0: 20:0000321824 0: 0:188933 0: 0: 0:177659 0: 0:101971 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

23:28726 16:9846 0:815632 268:3604 0:199106 26:99935 17:2255 12:5718 0: 0: 0:010156 0: 2:94616 0: 0: 8:19509 0: 3:31843 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

1:10471 0:0541875 0:0005962 20:43266 0:000241163 0:0161693 0:169585 0:0191714 0: 0: 4:36536 £ 1026 0: 0:00658837 0: 0: 0:0121792 0: 0:00422577 0:

241:1091 92:4474 0:457252 2248:171 0:949199 7:93844 29:06291 33:1339 0: 0: 0:0550604 0: 7:29159 0: 0: 21:91674 0: 7:47555 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

0:381952 20:482168 20:00366255 1:05379 20:00214058 20:266467 0:0658373 20:170307 0: 0: 20:0000384651 0: 20:0484318 0: 0: 0:00667468 0: 20:0375156 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

213:5886 21:50329 0:000693225 2:88068 20:00965266 1:64897 22:25783 20:319754 0: 0: 20:00357141 0: 0:303898 0: 0: 20:125453 0: 20:05279 0:

29:85681 29:15049 20:0964526 22:4732 20:0359414 21:57568 23:20362 23:05264 0: 0: 0:00102063 0: 21:41532 0: 0: 21:22295 0: 20:657454 0:

480:008 2277:275 23:39938 331:95 0:518864 2172:803 89:1965 251:8746 0: 0: 0:670983 0: 236:5975 0: 0: 14:0368 0: 1:13365 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

7:34299 6:6392 0:00938662 217:0623 0:0147453 1:43466 1:18689 1:56243 0: 0: 20:000518309 0: 0:363976 0: 0: 0:111898 0: 0:278794 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

15:2609 21:665537 20:0325943 4:78209 20:0255023 28:07839 2:60648 20:91568 0: 0: 0:00589181 0: 20:519365 0: 0: 0:0343565 0: 20:229064 0:

4:37903 18:2502 0:31662 248:1151 0:0770211 4:75029 3:82373 7:43136 0: 0: 20:0068586 0: 3:54526 0: 0: 3:3935 0: 1:7193 0:

0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:

176:488 32:4122 0:0776154 262:9606 0:177886 212:346 26:5689 7:04326 0: 0: 20:0170918 0: 25:2778 0: 0: 1:56207 0: 1:18349 0:

221:5227 239:0633 20:494407 121:758 20:355958 0:576694 25:67678 217:58 0: 0: 20:00940279 0: 23:59933 0: 0: 24:92509 0: 24:18857 0:

22:4313 97:9958 1:19706 2159:224 0:120322 24:8872 3:17625 23:7835 0: 0: 20:11519 0: 0:58433 0: 0: 1:73174 0: 2:14857 0:

ðR:20Þ

The other transformation matrices are calculated in similar ways. We can evaluate the eigenvector,

yj, of the matrix, mt and can obtain eigenvalues corresponding to variables t and ev by means of the

relations in (R.21) and (R.22). The values for t and ev are computed as jt and jev. The real valued

solutions are identical to those in Table 2, given in the previous example.

mt�vj ¼ jt�y j ðR:21Þ

mev�vj ¼ jev�yj ðR:22Þ

DISCUSSION

The advantages of the present method are recapitulated here.

In the present method, the fundamental Equation (the HFR equation and the constraints) is

expressed as a set of polynomial Equations (algebraic molecular orbital equation), combined with each

other seamlessly. In the conventional method, the loop for eigenvalue solutions, that of Self Consistent

Field (SCF) procedure, and that of the optimization calculation are nested with one another. By

contrast, in the present method, those nested loops are unified in a flow of the search for roots in a set

of polynomial equations, which afford us a clear view in the numerical computation and a shortcut to

the necessary information. The roots of the triangulated equations are obtained one by one

numerically. The eigenvalue solutions for multi-dimensional matrix and the iterative approximation for

the mean field, where the difficulty in the convergence generally occurs, are not needed. It is not

necessary to iterate the independent optimization toward the atomic structure and the wavefunctions.

Concerning the structural optimization, by means of the elimination of the variables, we can obtain a

set of equations with only atomic coordinates. The roots are the stable optimized structure. It means

that the “pseudo” atomic interactions are obtained without SCF calculations. In the optimization of

other parameters there are similar merits. The present method will simulate the cases where the

dynamics of the wavefunctions and that of the nuclei are strongly coupled with each other, beyond the

adiabatic approximation.

The algebraic molecular orbital equation, expressed as polynomial sets, informs us of the

relationships between unknown variables. Thus, in order to evaluate those unknowns, we can divide

suitable parts of them into prepared inputs and expected outputs, respectively. The calculation is not

confined to the conventional framework, such as, those where the input is the structure and the output

is the electronic states. The distinctions between forward and inverse problems are eradicated, and we

can treat all of them as forward problems in a unified way. In order to cope with the inverse problem,
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we should check whether it is well-posed or not. The present method affords us a key to this. After the

transformation from the fundamental equation to the Gröbner bases, the present method can inspect

the ‘properness’ of the problem, i.e. the existence of the solutions. Based on the mathematical ideal

theory, it can judge the existence of a solution, which provides us the zeros of the Gröbner bases. If the

solutions exists, it can also be determined whether these are isolated points or sets with more than one

dimension. If the solutions are isolated, the numbers of the solutions, in the range of the real or

complex numbers, can be known (see references on symbolic numeric computations).

The computations in the previous section, showed how we fixed the orbital exponent, z, at unity and

converted molecular integrals into polynomials of inter-atomic distance R alone. The algebraic

molecular equations can be extended to a more general case. We can make multi-variable Taylor

expansions for the atomic coordinates and orbital exponents in order to prepare polynomials of those

two kinds of variables. If this is done, the equation includes both parameters and we could optimize

atomic coordinates and orbital exponents simultaneously.

This present work is at a primitive stage. At present, this study does not necessarily afford us a

sufficiently precise calculation. One reason is the constraint of access to the hardware. The cost in the

symbolic computation tends to be so massive (especially on memory usage) that we are obliged to use

simplified molecular integrals, reduce the degrees of the approximating polynomial and rationalize

numerical coefficients in lower accuracies. As for the overall computation cost in the explanatory

calculations in the previous section, the generation of the molecular integrals, especially for two-

electron repulsion integrals, are the most demanding. Using a desktop pc (2.0 GHz dual core CPU,

2.0GB memory), in the case of 1s STO (with the assumption four orbital exponents in the integrand are

all equal), the computational time for a two-electron repulsion integral by Mathematica (version 8)

reaches approximately 100 , 1000 s. The memory usage for the most complex case (the exchange

type two-electron repulsion integral) amounts to 0.5 , 1GB. If orbital exponents are taken to be

different to each other, the computational time amounts to hours, being accompanied with an increase

in memory usage. (One should note that this is the result of a symbolic computation program, which is

still under development by the author’s research group; there is plenty room for optimization.)

The construction of exact and approximate energy functional by Mathematica can be done in a few

minutes. As for the symbolic-numeric solving, in the same computational environment, the numerical

solution in the examples can be obtained in 1 , 10 s, and the memory usage is 0.5 , 1MB, when the

computations are processed by Computer algebra system SINGULAR (version 3). This quickness is

because of the simplicity of the problem setting. If polynomial equations are more complicated than

those in the above explanatory calculations, for example, with longer integer numerical coefficients

and an increased number of symbols, the cost on the computational time and memory usage grows so

large that the symbolic-numeric computation becomes difficult in an insufficient computational

environment. In the simple computation of H2, as above, the structural optimization by UHF without

artificial symmetrization to wavefunctions results in a demanding calculation that requires large cpu-

time and memory usage. The reinforcement to the computer memory seems to be indispensable to

effective computation.

There is also a fundamental problem on the theoretical side. As seen in the starting polynomial

equation of (R.8), the scales of the numerical coefficients are similar. Meanwhile, after the symbolic

computations, in the generated Gröbner bases, the scales of the coefficients show great discrepancies.

The extreme growth of coefficients results in larger computational costs and a decrease in accuracy in

the numerical procedure. Thus, one of the major interests in the field of symbolic computation is how to

avoid such inconveniences, many strategies have now been proposed.19–21 For example, Brickenstein

proposes the “slimgb” algorithm in order to keep the intermediate expressions as slim as possible, by

regularly replacing a swelled polynomial with a shorter, equivalent one.19 Lichtblau, based on an

empirical study, discusses important points that should be handled carefully when using approximate

arithmetic for coefficients.20 Arnold presents modular algorithms for the purpose of limiting the

enormous growth in rational-numbered coefficients.21 These strategies, as well as others with the same

intention, will be of importance in more complex calculations.

Other difficulties will arise in the application to more complex systems.

First, the generation of the molecular integrals must be burdensome. The shown example, using a

hydrogen molecule is a very simple one. We need only one- or two-centered integrals. The molecular

integrals are computed from the 1s orbital alone, so that the integrals take the simplest expressions.

For a more complex molecule, we must use more general and more complicated atomic basis, which
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give more complex molecular integrals. Besides, we have to evaluate three- or four-centered two-

electron repulsion integrals. Here we have a problem: as for the analytic expression of multi-centered

repulsion integrals, the derivation by the STO is a formidable one. For this reason, the STO has not been

widely used in quantum chemistry. But, as there are several merits in STO, studies to obtain analytic

expressions for multi-centered repulsion integrals by means of STO are still pursued.22 At present, it is

more pragmatic to employ GTO, the de facto standard, in which the analytic technique for the

derivation of multi-centered integrals has been well established.

Secondly, in the explanatory numerical computations given above, we can evaluate both ground and

excited states. This means that we must confront all possible electronic configurations and single out

the necessary one from the solutions. It is in contrast to the conventional computations, where it is

trivial work to get a ground state; one has only to compute the necessary number of lower occupied

eigenvalues in ascending order from the bottom and put an electron in each; in the iterative

minimization of the total energy functional, one can gather occupied states only, omitting the

calculation of unoccupied states. On the other hand, in the polynomial equations, if one solves them

without care, the whole eigenstates (including both of necessary and unnecessary ones, and as many

as the matrix dimension) will appear in the set of solutions indiscriminately. The number of

unnecessary configurations shall grow enormously in more complex systems, where more electrons

and a larger basis set are included. In order to sift out the ground states, we can pick up the

configuration in which the total sum of the eigenvalues in the occupied states becomes minimal, by

firstly solving the equations for energy spectrum, obtained by polynomial triangulations. This tactic will

be of use for sorting and indexing excited states. Also, to impose certain point group symmetry on wave

function will be effective in the reduction of computational cost. The RHF structural optimization for a

hydrogen molecule in the previous section, in which the ground state is extracted from the

symmetrized wavefunction, is a clumsy example of this. The switching between symmetrized and

asymmentrized wavefunctions lead to the selection of ground or excited states.

Thirdly, the polynomial approximation to the exact functional causes nonsensical solutions, which

should be checked with care. In more complicated cases, this situation will be troublesome. The

admissible solutions must lie in a range where the polynomial approximation, through the Taylor

expansion, is quantitatively valid: if the solution appears to be dubious, one must re-examine it by

another polynomial approximation with a different center point of the Taylor expansion. One can also

use polynomials of higher degrees for this purpose.

In summary, the present work shows that the concept of the “molecular orbital algebraic equation”

by means of the “polynomial approximation to molecular integrals” is applicable to the realistic first

principles electronic structure calculation, as well as its potential in several fundamental problems,

which are difficult to handle by the conventional method. We recognize that the difficulties to be

overcome are large. However, improvement in computer architecture is so rapid that we can expect the

achievement of sufficient accuracy by the present method and its application to complex and large

material in future, spurred by the refinement of the symbolic computation theory.
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