1887
Volume 4 (2023) Number 2
  • EISSN: 2708-0463

Abstract

حشرة نحل العسل من الحشرات الهامة اقتصاديّاً، سواء في تلقيح المحاصيل الزراعية أو إنتاج العسل والشمع والغذاء الملكي وحبوب اللقاح والبروبوليس وسم النحل. تتعرض هذه الحشرة للعديد من الأمراض والآفات الطفيلية، ويعتبر طفيل الفاروا من أخطر الآفات ضرراً على نحل العسل في العالم أجمع، ولأن طفيل الفاروا أصبح لديه مقاومة للعلاجات الكيماوية هدفت هذه الدراسة إلى اختبار كفاءة أربعة نباتات هي نبات الحَـدَق ، وإكليل الجبل ، والبردقوش ، والعُشار كمدخنات طبيعية لمكافحة الفاروا. تم إجراء الدراسة في محافظة إب بالجمهورية اليمنية، خلال الفترة من 15 مارس إلى 25 ابريل 2022، على خلايا نحل قياسية نوع (لانجستروث) بها طوائف من النحل اليمني ، تحتوي كل خلية من 6-7 إطارات (براويز) مغطاة بالنحل، وتم أخذ قراءة التساقط الطبيعي للفاروا لكل المعاملات بما فيها الشاهد قبل التطبيق بعد 3 أيام من وضع قواعد عد الفاروا، ثم بعد 6 و9 أيام على التوالي دون استخدام أي نوع من التدخين؛ وذلك من أجل حساب متوسط التساقط الطبيعي للفاروا.عوملت كل معاملة حسب المادة النباتية المستخدمة تدخيناً من خلال أبواب الخلايا، وأُخذت القراءات بعد 3 و6 و9 أيام على التوالي، وأظهرت النتائج أن استخدام النباتات السابقة تدخيناً لمكافحة حلم الفاروا أعطت جميعها نتائج جيدة في تساقط حلم الفاروا؛ حيث بلغ أعلى معدل للتساقط بعد المعالجة بنبات الحدق (T1) بمتوسط 144 حلماً/خلية، بينما كانت أقل نسبة تساقط في معاملة نبات (T3) بمتوسط 122.33 حلم/ خلية، وأظهرت النتائج أن معدل تساقط حلم الفاروا الميت بعد المعالجة كان كبيراً خلال الـ 3 أيام الأولى للمعاملات باستثناء الشاهد بمتوسط عام بلغ 83.57% حلم/ معاملة، بينما كانت أقل أعداد الحلم المتساقط عند القراءة بعد 6أيام من المعالجة بمتوسط عام 66.57% حلم/معاملة، وأظهرت النتائج انخفاض معدل تساقط حلم الفاروا الميت بعد 9 أيام إلى أقل من النصف تقريباً مقارنة بالثلاثة أيام الأولى بمتوسط عام بلغ 36.50% حلم/ معاملة. وبالنسبة لمتوسط عدد حلم الفاروا داخل أعين الحضنة المغلقة للشغالات قبل وبعد المعالجة أظهرت النتائج أن نسبة إصابة حضنة الشغالات المغلقة بحلم الفاروا كانت مرتفعة قبل المعالجة لكل المعاملات بما فيها الشاهد بلغ 60%، وبعد المعالجة انخفضت بدرجة كبيرة في جميع المعاملات باستثناء (الشاهد)، وكانت أقل نسبة إصابة تم تسجيلها في معاملة نبات الحدق(T1) بنسبة 8.33%.

The honeybee is an economically important insect, whether for pollinating agricultural crops, or for producing honey, wax, royal jelly, pollen, propolis, and bee venom. However, this insect is exposed to various diseases and parasitic pests, whereas the parasite is considered as one of the most dangerous pests harmful to honeybees in the whole world. As the parasite has become resistant to chemical treatments, this study aimed to test the efficiency of four plants: , , , and as natural fumigants for control. The study was conducted in Ibb Governorate in Yemen (during the period March 15th to April 25th, 2022) on standard beehives (Langstroth) with colonies of Yemeni bees . Each cell contained 6-7 frames covered with bees. Readings of the natural precipitation of were taken for all treatments, including the control, before application, after 3 days of installing the count rules, then after 6 and 9 days respectively, without using any kind of smoking in order to calculate the average natural precipitation of . Each treatment was made according to the plant material used for smoking through the doors of the hives and readings were taken after 3, 6 and 9 days, respectively. The results showed that the use of the previous plants by smoking to combat gave good results in the shedding of mites, as it reached the highest rate of mites after treatment with (T1) with an average of 144 mites. While the lowest precipitation rate was in treatment (T3), with an average of 122.33 mites/cell. The results also showed that the rate of shedding of dead mites after treatment was significant during the first 3 days of the treatments, with the exception of the control, with an overall average of 83.57% mites/treatment. While the lowest numbers of fallen mites were when the reading was taken after 6 days of treatment, with an overall average of 66.57% mites/treatment. In addition, it was noticed a decrease in the rate of shedding of dead mites after 9 days to approximately less than half compared to the first three days, with an overall average of 36.50% mites/treatment. As for the average number of mites inside the eyes of the closed brood of the workers before and after treatment, the results showed that the rate of infection of the closed brood of the workers with mites was high before treatment for all treatments, including the control, reaching 60%. After treatment, it decreased significantly in all treatments except (the control), and the lowest infection rate was recorded in the (T1) treatment, at 8.33%.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2023.15
2023-11-09
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2023/2/ajsr.2023.issue2.15.html?itemId=/content/journals/10.5339/ajsr.2023.15&mimeType=html&fmt=ahah

References

  1. Anderson DL, Trueman JWH. Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology. 2000;24:165–189.
  2. Atwal AS, Goyal NP. Infestation of honeybee colonies with Tropilaelaps, and its control. Journal of Apicultural Research. 1971; 10:(3):137–142.
  3. Khan KA, Ghramh HA. An investigation of the efficacy of hygienic behavior of various honey bee (Apis mellifera) races toward Varroa destructor (Acari: Varroidae) mite infestation. Journal of King Saud University-Science. 2021; 33:(3):101393.
  4. Sajid ZN, Aziz M, Bodlah I, Rana RM, Ghramh HA, Khan KA. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honey bee (Apis mellifera) colonies, through sugar roll method. Saudi Journal of Biological Sciences. 2020 27:(1):53–59.
  5. Al-Ansari AM. Bees in honey production and crop pollination. Alexandria Egypt: Delta Typing Center; 1998. p. 1392.
  6. Banawas SA, Khanbash MS. Studying the Grooming Behavior of Yemeni Honeybee Apis mellifera jemenitica to Control Varroa destructor Mite in Doan Valley, Hadhramout, Yemen. Arabian Journal of Scientific Research. 2020; 2020:(2). https://doi.org/10.5339/ajsr.2020.8
  7. Harold H, Wolfgang R, Stephen EWC. The control of parasitic bee mites: Varroa jacobsoni, Acarapis woodi and Tropilaelaps clareae with formic acid. American Bee Journal. 1989 129:(11):739–742.
  8. Needham GR. Status report on Varroa jacobsoni. American Bee Journal. 1988 128:(2):106–110.
  9. Glinski Z. The effect of V. jacobsoni Oud. on the incidence and cause of chalkbrood disease in Apis mellifera L. colonies. Review of Agricultural Entomology. 1991;79–97.
  10. Allen MF, Ball BV. The incidence and world distribution of honeybee viruses. Bee World. 1996 77:(3):141–162.
  11. Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F, Colin ME, et al. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and Environmental Microbiology. 2004 70:(12):7185–7191.
  12. Ferrer-Dufol M, Martinez-Vinuales AI, Sanchez-Acedo C. Comparative tests of fluvalinate and flumethrin to control Varroa jacobsoni Oudemans. Journal of Apicultural Research. 1991 30:(2):103–106.
  13. Ariana A, Ebadi R, Tahmasebi G. Laboratory evaluation of some plant essences to control Varroa destructor (Acari: Varroidae). Experimental and Applied Acarology. 2002;27:319–327.
  14. Blasco C, Fernandez M, Pena A, Lino C, Silveira MI, Front G. Assessment of pesticide residues in honey samples from Portugal and Spain. Journal of Agricultural and Food Chemistry. 2003 51:(27):8132–8138.
  15. Howis M, Nowakowski P. Varroa destructor removal efficiency using beevital hive clean preparation. Journal of Apicultural Science. 2009 53:(2):15–20.
  16. Wallner K. Varroacides and their residues in bee products. Apidologie. 1999; 30:(2–3):235–248.
  17. Imdorf A, Bogdanov SO, Choa RI, Calderone NW. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidology, 1999; 30:(2–3):209–228.
  18. Khanbash MS, Obbad AS. Survey of Varroa mites infestations in honey bee colonies in the southern and eastern governorates of Yemen. Journal of Aden University of Natural and Applied Sciences. 1996;11–20.
  19. Jeffree EP. A photographic presentation of estimated numbers of honeybees (Apis Mellifera L.) on combs in 14×81/2 inch frames. Bee World. 1951 32:(12):89–91. doi: https://doi.org/10.1080/0005772X.1951.11094703
  20. Macedo PA, Wu J, Ellis MD. Using inert dusts to detect and assess Varroa infestations in honey bee colonies. Journal of Apicultural Research. 2002; 40:(1–2):3–7.
  21. Eischen FA, Wilson WT. The effects of natural products smoke on Varroa jacobsoni. American Bee Journal. 1997;137:222–223.
  22. Goswami V, Srivastava P, Khan MS. Efficacy of essential oils against Varroa destructor infesting Apis mellifera Linn. colonies and their impact on brood development Journal of Applied and Natural Science. 2014 6:(1):27–30.
  23. Ismail AE-HM, Ghoniemy HA, Owayss AA. Combatting honeybee Varroa mites by plant oils alone or in an IPM program. The 2nd Conference of Farm Integrated Pest Management, 16–18 January 2006. Faculty of Agriculture – Fayoum University; 2006. p. 172–185.
  24. Delaplane KS, Van der Steen J, Guzman NE. Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research. 2013 52:(1):1–12.
  25. Pawar SB. Efficacy and persistence of some plant products and chemicals against Varroa jacobsoni (Oudemans) in Apis mellifera L. colonies and their impact on brood development and honey production [M.Sc thesis]. Pantnagar: G. B. Pant University of Agriculture and Technology; 2008.
  26. Daher-Hjaij N, Alburaki A. Control of Varroa jacobsoni Oud. by fumigation with natural plant substances. Arab Journal of Plant Protection. 2006 24:(2):93–97.
/content/journals/10.5339/ajsr.2023.15
Loading
/content/journals/10.5339/ajsr.2023.15
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error