1887
Volume 5 (2024) Number 1
  • EISSN: 2708-0463

Abstract

هدف هذا البحث إلى دراسة كفاءة مواد مازة تم تحضيرها من مخلفات أوراق الشاي الأحمر في امتزاز صبغة الميثيلين الأزرق (MB) من المحلول المائي. فتم تحضير سطحين من مخلفات أوراق الشاي؛ وهما المسحوق الجاف DM ومسحوق الفحم CM. وتم تقييم تأثير زمن التلامس، وكمية المادة المازة، والأس الهيدروجيني، والتركيز الابتدائي على عملية الامتزاز. كما تم مقارنة النتائج العملية مع بعض النماذج النظرية للاتزان الحراري والديناميكية الحرارية والحركية لعمليات الامتزاز. وأظهرت النتائج أن أعلى سعة امتزاز كانت للمسحوق الجاف (11.50 ملغم/غم) عند pH 7.0، بينما كانت لفحم الأوراق (10.60 ملغم/غم) عند pH 10.0. كما أظهرت النتائج أن عملية إزالة الصبغة كانت سريعة جدّاً للسطحين، حيث تم الوصول إلى حالة الاتزان خلال 10-15 دقيقة. ووجد أن نموذج الرتبة الثانية الزائفة ونموذج فريندليش يتطابقان بشكل جيد مع النتائج العملية، بينما كان نموذج لانجماير للاتزان الحراري غير ملائم للسطح الجاف. كما أوضحت دراسة الديناميكية الحرارية أن عملية الامتزاز كانت ماصة للحرارة وتعتمد على درجة الحرارة، حيث إن قيم التغير في العشوائية (ΔSo) كانت موجبة لكلا السطحين، بينما التغير في الطاقة الحرة (ΔGo) كانت سالبة للسطح الجاف وموجبة لسطح الفحم ومنخفضة عند الظروف القياسية؛ مما يدل على زيادة طفيفة في العشوائية وتلقائية العملية عند الدرجات العالية. وهذا البحث يوضح أن مخلفات أوراق الشاي الأحمر يمكن استخدامها كمواد مازة فعّالة ورخيصة لإزالة الصبغات من المياه الملوثة.

This research aimed to study the efficiency of adsorbent materials prepared from red tea leaves residues in the adsorption of methylene blue (MB) dye from an aqueous solution. Two surfaces were prepared from tea leaves residues; namely, the dry powder DM and the charcoal powder CM. The effect of contact time, adsorbent amount, pH, and initial concentration on the adsorption process were evaluated. The experimental results were also compared with some theoretical models of isotherms, thermodynamics, and kinetics of adsorption processes. The results showed that the highest adsorption capacity was for the dry powder (11.50 mg/g) at pH 7.0, while it was for the charcoal (10.60 mg/g) at pH 10.0. The results also showed that the dye removal process was very fast for both surfaces, where the equilibrium state was reached within 10-15 minutes. It was found that the pseudo-second-order model and the Freundlich model fit well with the experimental results, while the Langmuir model for isotherms was not suitable for the dry surface. The thermodynamic study showed that the adsorption process was endothermic and temperature-dependent, where the values of entropy change (ΔSo) were positive for both surfaces, while the free energy change (ΔGo) was negative for the dry surface and positive for the charcoal surface and low at standard conditions, indicating a slight increase in randomness and spontaneity of the process at high temperatures. This research shows that red tea leaves residues can be used as effective and cheap adsorbent materials for removing dyes from polluted water.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.2
2024-04-30
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/1/AJSR.2024.issue1.2.html?itemId=/content/journals/10.5339/ajsr.2024.2&mimeType=html&fmt=ahah

References

  1. Elsherif KM, Yaghi MM. Studies with model membrane: The effect of temperature on membrane potential. Moroccan Journal of Chemistry. 2017; 5:(1):131–138.
    [Google Scholar]
  2. Egwuatu CI, Okafor PC, Ndubuisi JO, Ezeagwu PC. Optimized adsorption of Pb(II) ion from aqueous solution using sharp sand: Ann and RSM modelling. Asian Journal of Applied Chemistry Research. 2023; 14:(2):1–15.
    [Google Scholar]
  3. Dakhil IH. Adsorption of methylene blue dye from wastewater by spent tea leaves. Journal of Kerbala University. 2013; 11:(3):5–14.
    [Google Scholar]
  4. Zghal S, Jedidi I, Cretin M, Cerneaux S, Abdelmouleh M. Adsorptive removal of rhodamine B dye using carbon graphite/CNT composites as adsorbents: Kinetics, isotherms and thermodynamic study. Materials. 2023; 16:(3):1015.
    [Google Scholar]
  5. Alkherraz AM, Elsherif KM, Blayblo NA. Safranin adsorption onto Acasia plant derived activated carbon: Isotherms, thermodynamics and kinetic studies. . Chemistry International. 2023; 9:(4):134–145.
    [Google Scholar]
  6. Lafi R, Montasser I, Hafiane A. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorption Science & Technology. 2019; 37:(1–2):160–181.
    [Google Scholar]
  7. Elsherif KM, Yaghi MM. Membrane potential studies of parchment supported silver oxalate membrane. Journal of Materials and Environmental Sciences. 2017; 8:(1):356–363.
    [Google Scholar]
  8. Özyaman MN, Çağşirli S, Özüdoğru Y. Adsorption and kinetic studies of methylene blue from aqueous solution using modified spent tea leaves. Hittite Journal of Science and Engineering. 2023; 10:(2):145–151.
    [Google Scholar]
  9. Korus I. Separation of chosen heavy metals from multi-component mixtures and galvanic wastewater in adsorption on unmodified and modified magnetite. Desalination and Water Treatment. 2023;301:197–208.
    [Google Scholar]
  10. Duran M, Arar Ö, Ard M. Removal of phthalic acid and isophthalic acid from aqueous solution by anion exchange resin. Journal of the Chilean Chemical Society. 2019; 64:(1):4399–4403.
    [Google Scholar]
  11. Elsherif KM, El-Hashani A, El-Dali A, Saad M. Ion-permeation rate of (1:1) electrolytes across parchment-supported silver chloride membrane. International Journal of Chemistry and Pharmaceutical Sciences. 2014; 2:(6):890–897.
    [Google Scholar]
  12. Alkherraz AM, Elsherif KM, El-Dali A, Blayblo NA, Sasi M. Thermodynamic, equilibrium and kinetic studies of safranin adsorption onto Carpobrotus edulis. Asian Journal of Nanoscience and Materials. 2022; 4:(2):118–131.
    [Google Scholar]
  13. Sahu S, Pahi S, Tripathy S, Singh SK, Behera A, Sahu UK, et al. Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. Journal of Molecular Liquids. 2020;315:113743.
    [Google Scholar]
  14. Tang X, Ran G, Li J, Zhang Z, Xiang C. Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. Journal of Hazardous Materials. 2021;402:123579.
    [Google Scholar]
  15. Han Q, Wang J, Goodman BA, Xie J, Liu Z. High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technology. 2020;366:239–248.
    [Google Scholar]
  16. Elsherif KM, El-Hashani A, El-Dali A, El-kailany R. Bi-ionic potential studies for thallium chromate parchment-supported membrane. International Journal of Research in Pharmacy and Chemistry. 2014; 4:(2):267–273.
    [Google Scholar]
  17. Alkherraz AM, Ali AK, Elsherif KM. Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chemistry International. 2020; 6:(1):11–20.
    [Google Scholar]
  18. Elsherif KM, Yaghi MM. Studies with model membrane: Determination of fixed charge density of silver sulfite membrane. American Journal of Polymer Science and Technology. 2016; 2:(2):28–33.
    [Google Scholar]
  19. Alkherraz AM, Ali AK, Elsherif KM, El-Dali A. Equilibrium and thermodynamic studies of Pb(II), Zn(II), Cu(II) and Cd(II) adsorption onto mesembryanthemum activated carbon. Journal of Medicinal and Chemical Sciences. 2020; 3:(1):1–10.
    [Google Scholar]
  20. Sivakumar R, Lee NY. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere. 2022;286:131890.
    [Google Scholar]
  21. El-Hashani A, Elsherif KM, Edbey K, Alfaqih F, Alomammy M, Alomammy S. Biosorption of Eriochrome Black T (EBT) onto waste tea powder: Equilibrium and kinetic studies. To Chemistry Journal. 2018; 1:(3):263–275.
    [Google Scholar]
  22. Meili L, Lins PVS, Costa MT, Almeida RL, Abud AK, Soletti JI, et al. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Progress in Biophysics and Molecular Biology. 2019;141:60–71.
    [Google Scholar]
  23. Elsherif KM, Saad RAA, Ewlad-Ahmed AM, Treban AA, Iqneebir AM. Adsorption of Cd(II) onto olive stones powder biosorbent: Isotherms and kinetic studies. Advanced Journal of Chemistry, Section A. 2024; 7:(1):59–74.
    [Google Scholar]
  24. Zaidi Z, Manchanda A, Sharma A, Choudhry A, Sajid M, Khan SA, et al. Adsorptive removal of methylene blue using fruit waste activated carbon and its binary metal oxide nanocomposite. Chemical Engineering Journal Advances. 2023;16:100571.
    [Google Scholar]
  25. Elsherif KM, El-Dali A, Alkarewi AA, Ewlad-Ahmed AM, Treban A. Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chemistry International. 2021; 7:(2):79–89.
    [Google Scholar]
  26. Li H, Budarin VL, Clark JH, North M, Wu X. Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanis and porosity dependence. Journal of Hazardous Materials. 2022;436:129174.
    [Google Scholar]
  27. Elsherif KM, El-Hashani A, Haider I. Biosorption of Fe(III) onto coffee and tea powder: Equilibrium and kinetic study. Asian Journal of Green Chemistry. 2018; 2:(4):380–394.
    [Google Scholar]
  28. Miyah Y, Lahrichi A, Idrissi M, Khalil A, Zerrouq F. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surfaces and Interfaces. 2018;11:74–81.
    [Google Scholar]
  29. Üner O, Geçgel Ü, Bayrak Y. Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis. Water, Air, & Soil Pollution. 2016; 227:(7):247.
    [Google Scholar]
  30. Adesina AO, Elvis OA, Mohallem NDS, Olusegun SJ. Adsorption of methylene blue and Congo red from aqueous solution using synthesized alumina–zirconia composite. Environmental Technology. 2021; 42:(7): 1061–1070.
    [Google Scholar]
  31. Elsherif KM, Ewlad-Ahmed AM, Treban A. Removal of Fe (III), Cu (II), and Co (II) from aqueous solutions by orange peels powder: Equilibrium study. World Journal of Biochemistry and Molecular Biology. 2017; 2:(6):46–51.
    [Google Scholar]
  32. Elsherif KM, Haider I, El-Hashani A. Adsorption of Co (II) ions from aqueous solution onto tea and coffee powder: Equilibrium and kinetic studies. Journal of Fundamental and Applied Sciences. 2019; 11:(1):65–81.
    [Google Scholar]
  33. Thang NH, Khang DS, Hai TD, Nga DT, Tuan PD. Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Advances. 2021; 11:(43):26563–26570.
    [Google Scholar]
  34. Alkherraz AM, Ali AK, El-Dali A, Elsherif KM. Biosorption study of Zn(II), Cu(II), Pb(II) and Cd(II) ions by palm leaves activated carbon. To Chemistry Journal. 2019;4:8–17.
    [Google Scholar]
  35. Elsherif KM, El-Dali A, Ewlad-Ahmed AM, Treban A, Alttayib I. Removal of safranin dye from aqueous solution by adsorption onto olive leaves powder. Journal of Materials and Environmental Science. 2021; 12:(3):418–430.
    [Google Scholar]
  36. Elsherif KM, El-Hashani A, Haider I. Equilibrium and kinetic studies of Cu (II) biosorption onto waste tea and coffee powder (WTCP). Iranian Journal of Analytical Chemistry. 2018; 5:(2):31–38.
    [Google Scholar]
  37. Elsherif KM, El-Dali A, Ewlad-Ahmed AM, Treban AA, Alqadhi H, Alkarewi S. Kinetics and isotherms studies of safranin adsorption onto two surfaces prepared from orange peels. Moroccan Journal of Chemistry. 2022; 10:(4):639–651.
    [Google Scholar]
  38. Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal. 2011; 168:(2):722–730.
    [Google Scholar]
  39. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials & Interfaces. 2013;5:8796–8804.
    [Google Scholar]
  40. Derakhshan Z, Baghapour MA, Ranjbar M, Faramarzian M. Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies. Health Scope. 2013; 2:(3):136–144.
    [Google Scholar]
  41. El-Shafie AS, Karamshahi F, El-Azazy M. Turning waste avocado stones and montmorillonite into magnetite-supported nanocomposites for the depollution of methylene blue: Adsorbent reusability and performance optimization. Environmental Science and Pollution Research. 2023;30:118764–118781.
    [Google Scholar]
  42. Amode JO, Santos JH, Alam ZM, Mirza AH, Mei CC. Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: Equilibrium and kinetics studies. International Journal of Industrial Chemistry. 2016;7:333–345.
    [Google Scholar]
  43. Djama C, Bouguettoucha A, Chebli D, Amrane A, Tahraoui H, Zhang J, et al. Experimental and theoretical study of methylene blue adsorption on a new raw material, Cynara scolymus – A statistica physics assessment. Sustainability. 2023; 15:(13):10364.
    [Google Scholar]
  44. Modi S, Yadav VK, Ali D, Choudhary N, Alarifi S, Sahoo DK, et al. Photocatalytic degradation of methylene blue from aqueous solutions by using nano-ZnO/kaolin-clay-based nanocomposite. Water. 2023; 15:(22):3915.
    [Google Scholar]
  45. Kuang Y, Zhang X, Zhou S. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water. 2020; 12:(2):587.
    [Google Scholar]
  46. Turp SM, Turp GA, Ekinci N, Özdemir S. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Science & Technology. 2020; 82:(3):513–523.
    [Google Scholar]
/content/journals/10.5339/ajsr.2024.2
Loading
/content/journals/10.5339/ajsr.2024.2
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error