1887
Volume 5 (2024) Number 2
  • EISSN: 2708-0463

Abstract

في السنوات الأخيرة، مع تزايُد دمج مصادر الطاقة المتجددة وشبكات الاتصال ضمن الشبكة الكهربائية والسعي نحو شبكات ذكية، فإنه ظهرت تحديات جديدة في مجالات التحكم وحماية أنظمة الطاقة. وأيضاً تثير قابلية الشبكات الكهربائية الذكية للهجمات السيبرانية وتأثيراتها المحتملة على استقرار الشبكة قلقاً متزايداً. وتستكشف هذه الدراسة تأثيرات التهديدات السيبرانية من خلال استهداف أنظمة الحماية الكهربائية الذكية والتكيُّفية الخاصة بزيادة التيار (OCR). ويهدف هذا العمل إلى تقييم الهجمات السيبرانية المختلفة على نموذج شبكة كهربائي حقيقي مع تحليل الظواهر العابرة للنظام الكهربائي أثناء عمليات التشغيل المختلفة، والأعطال الفيزيائية. في هذا العمل، يُستخدم برنامج دراسة الظواهر الكهرومغناطيسية (EMTP) لفهم كيفية سلوك الأنظمة الكهربائية خلال الأحداث العابرة. بالإضافة لذلك، أوضح البحث إمكانية استخدام أنظمة الحماية الكهربائية الذكية (IEDs) مع أنظمة اتصالات قليلة التكلفة مثل تقنية الشبكة الواسعة عبر المسافات الطويلة (LoRaWAN) لتعزيز كفاءة الشبكة الكهربائية. وتسلط نتائج تحليلنا الضوء على تقييم الأداء الشامل واستقرار الشبكة في مواجهة الهجمات السيبرانية. على سبيل المثال، في هجوم سيبراني على المغذي الخاص بالأحمال، فشل جهاز الحماية في اكتشاف أن العطل وهمي، وهذا أدى إلى فصل التيار الكهربائي. وبشكل عام، تقدم دراستنا إسهامات كبيرة في تعزيز فهمنا لقضايا الأمن السيبراني في الشبكات الكهربائية الذكية. وتسلط الضوء على ضرورة تنفيذ تدابير حماية محسّنة وتقنيات مرنة للتكيُّف مع تطور المشهد الطاقي نحو الشبكات الذكية

In recent years, with the increasing integration of renewable energy sources and communication networks into the modern power grid, and the transition towards smart grids, new challenges have emerged in the fields of power system control and protection. The vulnerability of smart grids to cyber assaults and their potential for disrupting grid stability have become a great concern. This study explores the effects of cyber threats by targeting intelligent and adaptive protection systems, related to overcurrent protection relay (OCR). The objective of this work is to assess different cyber attacks on a real power grid model, analyzing transient phenomena during different operational scenarios and physical faults. In this work, the Electromagnetic Transients Program (EMTP) is employed to understand the behavior of electrical systems during transient events. In addition, the study highlights the possible application of Intelligent Electronic Devices (IEDs) such as OCRs with economic communication technologies, Long-Range Wide Area Network (LoRaWAN), to improve the effectiveness of the power grid. The investigation and results of the study provide insights into the thorough assessment of the smart power network's performance and resilience under cyber threats. For instance, in a cyber-attack on the load feeder, the protection device failed to detect the unreal fault, resulting in the disconnection of the healthy feeder. Overall, our study provides significant contributions to advancing the understanding of cyber security issues in smart grids, emphasizing the importance of implementing enhanced protective measures and resilience techniques to improve the performance of smart grid models.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.8
2024-10-31
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/2/AJSR.2024.issue2.8.html?itemId=/content/journals/10.5339/ajsr.2024.8&mimeType=html&fmt=ahah

References

  1. Holderbaum W, Alasali F, Sinha A. Energy forecasting and control methods for energy storage systems in distribution networks, predictive modelling and control techniques. Cham, Switzerland: Springer; 2023.
    [Google Scholar]
  2. Rohten JA, Silva JJ, Muñoz JA, Villarroel FA, Dewar DN, Rivera ME, et al. A simple self-tuning resonant control approach for power converters connected to micro-grids with distorted voltage conditions. IEEE Access. 2020;8:216018–216028. https://doi.org/10.1109/ACCESS.2020.3041528
    [Google Scholar]
  3. Naz MN, Mushtaq MI, Naeem M, Iqbal M, Altaf MW, Haneef M. Multicriteria decision making for resource management in renewable energy assisted microgrids. Renewable and Sustainable Energy Reviews. 2017;71:323–341.https://doi.org/10.1016/j.rser.2016.12.059
    [Google Scholar]
  4. Sanjab A, Saad W, Guvenc I, Sarwat A, Biswas S. Smart grid security: Threats, challenges, and solutions. Computer Science and Game Theory. 2016. https://arxiv.org/pdf/1606.06992.pdf
    [Google Scholar]
  5. Das L, Munikoti S, Natarajan B, Srinivasan B. Measuring smart grid resilience: Methods, challenges and opportunities. Renewable and Sustainable Energy Reviews. 2020; 130:(109918). https://doi.org/10.1016/j.rser.2020.109918
    [Google Scholar]
  6. Arman A, Krishnan VV; Foroutan SA, Touhiduzzaman M, Rublein C, Srivastava A, et al. Cyber physical security analytics for anomalies in transmission protection systems. IEEE Transactions on Industry Applications. 2019;55:6313–6323. https://ieeexplore.ieee.org/ielaam/28/8896134/8762160-aam.pdf?tag=1
    [Google Scholar]
  7. Majumder S, Vosughi A, Mustafa HM, Warner TE, Srivastava AK. On the cyber-physical needs of DER-based voltage control/optimization algorithms in active distribution network. IEEE Access. 2023;11:64397–64429. https://doi.org/10.1109/ACCESS.2023.3278281
    [Google Scholar]
  8. Alasali F, Mustafa H, Saidi AS, El-Naily N, Abeid S, Holderbaum W, et al. The recent development of protection coordination schemes based on inverse of AC microgrid: A review. IET Generation, Transmission and Distribution. 2023; 18:(1):1–23. https://doi.org/10.1049/gtd2.13074
    [Google Scholar]
  9. He H, Yan J. Cyber-physical attacks and defenses in the smart grid: A survey. IET Cyber-Physical Systems: Theory & Applications. 2016 Dec 1:(1):13–27.
    [Google Scholar]
  10. Mohamed N, Salama MMA. Data mining-based cyber physical attack detection tool for attack-resilient adaptive protective relays. Energies. 2022; 15:(12):4328. https://doi.org/10.3390/en15124328
    [Google Scholar]
  11. Idaho Nationa. Laboratory. Cyber threat and vulnerability analysis of the U.S. electric sector-Mission Support Center Analysis Report. 2016 August. https://energy.gov/sites/prod/files/2017/01/f34/Cyber%20Threat%20and%20Vulnerability%20Analysis%20of%20the%20U.S.%20Electric%20Sector.pdf [Accessed 15 July 2024].
  12. Sun C-C, Hahn A, Liu C-C. Cyber security of a power grid: State-of-the-art. International Journal of Electrical Power & Energy Systems. 2018 July 1;: 99:45–56.
    [Google Scholar]
  13. Altaf MW, Arif MT, Islam SN, Haque ME. Microgrid protection challenges and mitigation approaches- A comprehensive review. IEEE Access. 2022 Apr 5;:10:38895–38922. https://doi.org/10.1109/ACCESS.2022.3165011
    [Google Scholar]
  14. Alasali F, El-Naily N, Saidi AS, Itradat A, Saad SM, Holderbaum W. An advanced dual-setting protection scheme for microgrid resilience based on nonstandard tripping characteristics of overcurrent relays. Electric Power Systems Research. 2023 Dec;225:109869. https://doi.org/10.1016/j.epsr.2023.109869
    [Google Scholar]
  15. Alasali F, Saad SM, Saidi AS, Itradat A, Holderbaum W, El-Naily N, et al. Powering up microgrids: A comprehensive review of innovative and intelligent protection approaches for enhanced reliability. Energy Reports. 2023 Nov;10:1899–1924. https://doi.org/10.1016/j.egyr.2023.08.068
    [Google Scholar]
  16. Yang Q, Le Blond S, Aggarwal R, Wang Y, Li J. New ANN method for multi-terminal HVDC protection relaying. Electric Power Systems Research. 2017 July;148:192–201. https://doi.org/10.1016/j.epsr.2017.03.024
    [Google Scholar]
  17. Eladl A, Saeed M, Sedhom BE, Abdelaziz AY, Bureš V. LoRaWAN-based IoT protocol for three levels central protection scheme in MT-HVDC networks with ANFIS-PSO restoration algorithm. Energy Reports. 2023 Nov;10:4556–4573. https://doi.org/10.1016/j.egyr.2023.11.013
    [Google Scholar]
  18. Aboelezz AM, Eladl AA, Amasha MT, Elderigi MH, Mohamed MA, Aldoadoa SW, et al. Efficient fault detection, localization, and isolation in MT-HVDC systems based on distance protection and LoRaWAN communication. Energy Reports. 2023 Nov 1;10:4183–4197.
    [Google Scholar]
  19. Tzelepis D, Dyśko A, Fusiek G, Nelson J, Niewczas P, Vozikis D, et al. Single-ended differential protection in MTDC networks using optical sensors. IEEE Transactions on Power Delivery. 2017; 32:(3):1605–1615. https://doi.org/10.1109/TPWRD.2016.2645231
    [Google Scholar]
  20. Descloux J, Rault P, Nguefeu S, Curis JB, Guillaud X, Colas F, et al. HVDC meshed grid: Control and protection of a multi-terminal HVDC system. CIGRE, Paris Session 2012. Water and Energy International. 2014 Jul; 71(2):66. https://www.indianjournals.com/ijor.aspx?target=ijor:wei&volume=71&issue=2&article=abs003
    [Google Scholar]
  21. Pramanik AS, Sepasi S. Transient behavior analysis of microgrids in grid-connected and islanded modes: A comparative study of LVRT and HVRT capabilities. Clean Technologies. 2023 Nov 10; 5:(4):1287–1303. https://doi.org/10.3390/cleantechnol5040065
    [Google Scholar]
  22. Kumar JR, Sikdar B, Kundur D. Three-phase radial EMTP and stealthy attack detector for distribution systems. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16–19 December 2020, Jaipur, India. https://doi.org/10.1109/PEDES49360.2020.9379887
    [Google Scholar]
/content/journals/10.5339/ajsr.2024.8
Loading
/content/journals/10.5339/ajsr.2024.8
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error