1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

The equations of generalized thermoelastic diffusion with four relaxation times are given. The variational principle is derived. Using Laplace transforms, a uniqueness theorem for these equations is proved. Also, a reciprocity theorem is obtained.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.27
2014-01-01
2024-11-18
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.27.html?itemId=/content/journals/10.5339/connect.2013.27&mimeType=html&fmt=ahah

References

  1. Biot MA. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956; 27:3:240253.
    [Google Scholar]
  2. Kaliski S. Wave propagation of heat conduction. Bull Polish Acad Sci Tech Sci. 1965; 13::211219.
    [Google Scholar]
  3. Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967; 15::299309.
    [Google Scholar]
  4. Müller L. The coldness, a universal function in thermoelastic bodies. Arch Rational Mech Anal. 1971; 41:5:319332.
    [Google Scholar]
  5. Green AE, Laws N. On the entropy production inequality. Arch Rational Mech Anal. 1972; 45:1:4753.
    [Google Scholar]
  6. Green AE, Lindsay KA. Thermoelasticity. J Elasticity. 1972; 2:1:17.
    [Google Scholar]
  7. Suhubi ES. Thermoelastic solids in continuum physics. Volume II, Part II, Chapter II. New York: Academic Press 1975.
    [Google Scholar]
  8. Podstrigach YaS. Differential equations of the problem of thermodiffusion in isotropic deformable solid. Dokl Akad Nauk Ukrain SSR. 1961;169172.
    [Google Scholar]
  9. Podstrigach YaS, Pavlina VS. General relationships of the thermodynamics of solid solutions. UKR FIZ ZH. 1961; 6::655663.
    [Google Scholar]
  10. Podstrigach YaS, Pavlina VS. Fundamental equations of plane thermodiffusion problem. Prikl Mat Tekhn Fiz. 1965; 1:3.
    [Google Scholar]
  11. Podstrigach YaS, Shvechuk PR. Variational form of the equations of thermodiffusion processes in deformed solid bodies. Prikl Mat Mekh. 1969; 4::774777.
    [Google Scholar]
  12. Nowacki W. Certain problems of thermodiffusion in solids (Thermal diffusion in solids subject to deformation, using classical elasticity theory body force analogy for variational and reciprocal theorems). Arch Mech Stos. 1971; 23:6:731755.
    [Google Scholar]
  13. Nowacki W. Termosprezystość, Polish Academy of Sciences. Warszawa: Ossolineum 1972.
    [Google Scholar]
  14. Nowacki W. Dynamical problems of thermodiffusion in solids (1). Bull Polish Acad Sci Tech Sci. 1974a; 22:IV:5564.
    [Google Scholar]
  15. Nowacki W. Dynamical problems of thermodiffusion in solids (2). Bull Polish Acad Sci Tech Sci. 1974b; 22:IV:205211.
    [Google Scholar]
  16. Nowacki W. Dynamical problems of thermodiffusion in solids (3). Bull Polish Acad Sci Tech Sci. 1974c; 22:IV:257266.
    [Google Scholar]
  17. Fichera G. Uniqueness, existence and estimate of the solution in the dynamical problems of thermodiffusion in an elastic solid. Arch Mech Stos. 1974; 26:5:903920.
    [Google Scholar]
  18. Nowacki W. Dynamic problems of diffusion in solids. Eng Fract Mech. 1976; 8:1:261266.
    [Google Scholar]
  19. Herrera N, Billok F. Dual variational principles for diffusion equations. Quart Appl Math. 1976; 33::85102.
    [Google Scholar]
  20. Naerlović-Veljković N. Thermodiffusion in elastic, magnetically saturated, current conducting media, I-Constitutive equations. Theor Appl Mech. 1976; 2::91100.
    [Google Scholar]
  21. Naerlović-Veljković N. Thermodiffusion in elastic, magnetically saturated, current conducting media, II-Field equations. Theor Appl Mech. 1977; 3::8592.
    [Google Scholar]
  22. Shvets RN, Dasyuk YaM. On variational theorems of thermodiffusion in deformed solid bodies. Zh Mat Fiz. 1977; 22::102108.
    [Google Scholar]
  23. Gawinecki JA, Sierpiñski K. Existence of a solution of the first initial- boundary-value problem for the quasistatic equations of thermodiffusion in solids. Bull Polish Acad Sci Tech Sci. 1982a; 30::159162.
    [Google Scholar]
  24. Gawinecki JA, Sierpiñski K. Existence, uniqueness, and regularity of the solution of the first initial-boundary-vale problem for the equations of thermodiffusion in solid bodies. Bull Polish Acad Sci Tech Sci. 1982b; 30::163171.
    [Google Scholar]
  25. Kubik J. The reciprocity theorem in coupled problems of viscoelastic thermodiffusion. Acta Mech. 1984; 50:3-4:285290.
    [Google Scholar]
  26. Wróbel M. Variational theorem for the problems of coupled thermoviscoelastic diffusion with finite velocities of heat and mass propagation. Z.N. WSI, Opole. 1987; 23:.
    [Google Scholar]
  27. Wróbel M. Variational form of the thermodiffusion flows coupled with the stress field. J Theoret Appl Mech. 1987; 25::403418.
    [Google Scholar]
  28. Gawinecki JA, Kacprzyk P, Bar-Yoseph P. Initial boundary value problem for some coupled nonlinear parabolic system of partial differential equations appearing in thermoelastic diffusion in solid body. J Appl Anal. 2000; 19::121130.
    [Google Scholar]
  29. Gawinecki JA, Szymaniec A. Global solution of the Cauchy problem in nonlinear thermoelastic diffusion in solid body. Proc Appl Math Mech. 2002; 1::446447.
    [Google Scholar]
  30. Sherief HH, Hamza FA, Saleh HA. The theory of generalized thermoelastic diffusion. Int J Eng Sci. 2004; 42:5-6:591608.
    [Google Scholar]
  31. Aouadi M. Uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion. J Therm Stresses. 2007; 30:7:665678.
    [Google Scholar]
  32. Aouadi M. Generalized theory of thermoelastic diffusion for anisotropic media. J Therm Stresses. 2008; 31:3:270285.
    [Google Scholar]
  33. Aouadi M. Theory of generalized micropolar thermoelastic diffusion under lord? Shulman model. J Therm Stresses. 2009; 32:9:923942.
    [Google Scholar]
  34. Aouadi M. A theory of thermoelastic diffusion materials with voids. Z Angew Math Phys. 2010; 61:2:357379.
    [Google Scholar]
  35. Kuang Z-B. Variational principles for generalized thermodiffusion theory in pyroelectricity. Acta Mech. 2010; 214:3-4:275289.
    [Google Scholar]
  36. Kumar R, Kothari S, Mukhopadhyay S. Some theorems on generalized thermoelastic diffusion. Acta Mech. 2011; 217:3-4:287296.
    [Google Scholar]
  37. Ezzat MA, Fayik MA. Fractional order theory of thermoelastic diffusion. J Therm Stresses. 2011; 34:8:851872.
    [Google Scholar]
  38. Kumar R, Kansal T. Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate. Internat J Solids Structures. 2008; 45::58905913.
    [Google Scholar]
  39. Kumar R, Kansal T. Three-dimensional free vibration analysis of a transversely isotropic thermoelastic diffusive cylindrical panel. J Solid Mech. 2010; 2:4:376392.
    [Google Scholar]
  40. Kumar R, Kansal T. Plane waves and fundamental solution in the generalized theories of thermoelastic diffusion. Int J Appl Math Mech. 2012; 8:4:120.
    [Google Scholar]
  41. Kumar R, Kansal T. Reflection and refraction of plane waves at the interface of an elastic solid half-space and a thermoelastic diffusive solid half-space. Arch Mech. 2012; 64:3:293317.
    [Google Scholar]
  42. Kumar R, Kansal T. Analysis of plane waves in anisotropic thermoelastic diffusive medium. Mech Solids. 2012; 47:3:337356.
    [Google Scholar]
/content/journals/10.5339/connect.2013.27
Loading
  • Article Type: Research Article
Keyword(s): reciprocity theoremthermoelastic diffusionuniqueness theorem and variational principle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error