1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

Effect of thermal conductivity on gravitational instability of quantum plasma in the presence of fine dust particles has been investigated. Following the linearized stability theory and normal mode analysis, the paper established a general dispersion relation of the problem. Modified condition of Jeans gravitational instability is obtained due to quantum effect. Numerical calculations were performed to find the effect of each parameter on the growth rate of instability. The effect of fine dust particles does not affect the instability condition of the system but stabilizes the system by decreasing the growth rate of unstable mode. Curves show the destabilizing effect of thermal conductivity and stabilizing effect of quantum correction on the growth rate of unstable mode. The stability of the system is discussed by Routh-Hurwitz criterion of stability.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.32
2013-10-01
2024-11-19
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.32.html?itemId=/content/journals/10.5339/connect.2013.32&mimeType=html&fmt=ahah

References

  1. Chandrashekhar S. Hydrodynamics and Hydromagnetic Stability. XIII. Oxford: Clarendon Press 1961:.577
    [Google Scholar]
  2. Yang C, Gruendl RA, Chu Y, Mac Low M, Fukui Y. Large-scale gravitational instability and star formation in the large magellanic cloud. Astrophys J. 2007; 671:1:374379
    [Google Scholar]
  3. Prajapati RP, Pensia RK, Kaothekar S, Chhajlani RK. Self-gravitational instability of rotating viscous Hall plasma with arbitrary radiative heat-loss functions and electron inertia. Astrophys Space Sci. 2010; 327:1:139154
    [Google Scholar]
  4. Ali S, Shukla PK. Jeans instability in a plasma with positive-negative charged and neutral dust components. Phys Scripta. 2006; 73:4:359363
    [Google Scholar]
  5. Jacobs G, Shukla PK. Stability of molecular clouds in partially ionized self-gravitating space plasmas. J Plasma Phys. 2005; 71:4:487493
    [Google Scholar]
  6. Salimullah M, Jamil M, Shah HA, Murtaza G. Jeans instability in a quantum dusty magnetoplasma. Phys Plasmas. 2009; 16:1:014502
    [Google Scholar]
  7. Coroniti FV. Dissipation discontinuities in hydromagnetic shock waves. J Plasma Phys. 1970; 4:02:265
    [Google Scholar]
  8. Kato S, Kumar SS. The gravitational instability of an infinite homogeneous medium having viscosity and thermal conductivity. Publ Astron Soc Jpn. 1960; 12:3:290292
    [Google Scholar]
  9. Chhajlani RK, Vyas MK. Effect of thermal conductivity on the gravitational instability of a magnetized rotating plasma through a porous medium in the presence of suspended particles. Astrophys Space Sci. 1988; 145:2:223240
    [Google Scholar]
  10. Shaikh S, Khan A. Instability of thermally conducting self-gravitating systems. J Modern Phys. 2010; 01:01:7782
    [Google Scholar]
  11. Sharma RC, Sharma KC. Suspended particles and the gravitational instability of a rotating plasma. Astrophys Space Sci. 1980; 71:2:325332
    [Google Scholar]
  12. Sharma RC. Magneto-gravitational instability and suspended particles. Astrophys Space Sci. 1977; 46:2:255259
    [Google Scholar]
  13. Sharma RC. Thermal hydromagnetic instability of a partially ionized medium. Physica B+C. 1976; 81:1:199204
    [Google Scholar]
  14. Sharma RC, Prakash K, Dube SN. Effect of suspended particles on the onset of Benard convection in hydromagnetics. Acta Physica. 1976; 40:1:310
    [Google Scholar]
  15. Chhajlani RK, Sanghvi RK. Suspended particles and the gravitational instability of rotating magnetised medium. Beiträge aus der Plasmaphysik. 1985; 25:6:623631
    [Google Scholar]
  16. Pensia R, Patidar AK, Shrivastava V, Kumar V, Prajapat V. The role of Coriolis force and suspended particles in the fragmentation of matter in the central region of galaxy. J Bangladesh Acad Sci. 2012; 36:1:1
    [Google Scholar]
  17. Pensia RK, Prajapat V, Kumar V, Patidar AK, Shrivastava V. Effect of porosity and suspended particles on Jeans instability under thermal effects. Advan Stud Theoretic Phys. 2012; 23:6:11211136
    [Google Scholar]
  18. Pines D. Classical and quantum plasmas. J Nucl Energy, Part C: Plasma Phys. 1961; 2:1:517
    [Google Scholar]
  19. Pines D. Elementary Excitations in Solids. Oxford: Westview Press 1999;
    [Google Scholar]
  20. Gardner CL. The quantum hydrodynamic model for semiconductor devices. SIAM J Appl Math. 1994; 54:2:409427
    [Google Scholar]
  21. Haas F. A magnetohydrodynamic model for quantum plasmas. Phys Plasmas. 2005; 12:6:062117
    [Google Scholar]
  22. Lundin J, Marklund M, Brodin G. Modified Jeans instability criteria for magnetized systems. Phys Plasmas. 2008; 15:7:072116
    [Google Scholar]
  23. Ren H, Wu Z, Cao J, Chu PK. Jeans instability in quantum magnetoplasma with resistive effects. Phys Plasmas. 2009; 16:7:072101
    [Google Scholar]
  24. Shukla PK, Stenflo L. Jeans instabilities in quantum dusty plasmas. Phys Lett A. 2006; 355:4–5:378380
    [Google Scholar]
  25. Prajapati RP, Chhajlani RK. Effect of Hall current on the Jeans instability of magnetized viscous quantum plasma. Phys Scripta. 2010; 82:5:055003
    [Google Scholar]
/content/journals/10.5339/connect.2013.32
Loading
/content/journals/10.5339/connect.2013.32
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fine-dust particlesgravitational instabilityquantum correction and thermal conductivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error