1887
Volume 2014, Issue 4
  • ISSN: 2305-7823
  • EISSN:

Abstract

Three-dimensional design simulations of coronary metallic stents utilizing mathematical and computational algorithms have emerged as important tools for understanding biomechanical stent properties, predicting the interaction of the implanted platform with the adjacent tissue, and informing stent design enhancements. Herein, we demonstrate the hemodynamic implications following virtual implantation of bioresorbable scaffolds using finite element methods and advanced computational fluid dynamics (CFD) simulations to visualize the device-flow interaction immediately after implantation and following scaffold resorption over time. CFD simulations with time averaged wall shear stress (WSS) quantification following virtual bioresorbable scaffold deployment in idealized straight and curved geometries were performed. WSS was calculated at the inflow, endoluminal surface (top surface of the strut), and outflow of each strut surface post-procedure (stage I) and at a time point when 33% of scaffold resorption has occurred (stage II). The average WSS at stage I over the inflow and outflow surfaces was 3.2 and 3.1 dynes/cm2 respectively and 87.5 dynes/cm2 over endoluminal strut surface in the straight vessel. From stage I to stage II, WSS increased by 100% and 142% over the inflow and outflow surfaces, respectively, and decreased by 27% over the endoluminal strut surface. In a curved vessel, WSS change became more evident in the inner curvature with an increase of 63% over the inflow and 66% over the outflow strut surfaces. Similar analysis at the proximal and distal edges demonstrated a large increase of 486% at the lateral outflow surface of the proximal scaffold edge. The implementation of CFD simulations over virtually deployed bioresorbable scaffolds demonstrates the transient nature of device/flow interactions as the bioresorption process progresses over time. Such hemodynamic device modeling is expected to guide future bioresorbable scaffold design.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.56
2015-03-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/4/gcsp.2014.56.html?itemId=/content/journals/10.5339/gcsp.2014.56&mimeType=html&fmt=ahah

References

  1. Grube E, Schofer J, Hauptmann KE, Nickenig G, Curzen N, Allocco DJ, Dawkins KD. A novel paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer 9-month outcomes with the JACTAX HD stent. JACC Cardiovasc Interv. 2010 Apr; 3:4:431438.
    [Google Scholar]
  2. Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: A final common pathway of late stent failure. J Am Coll Cardiol. 2012 Jun 5; 59:23:20512057.
    [Google Scholar]
  3. Wykrzykowska JJ, Onuma Y, Serruys PW. Vascular restoration therapy: The fourth revolution in interventional cardiology and the ultimate “rosy” prophecy. EuroIntervention. 2009 Dec 15; 5:Suppl F:F7F8.
    [Google Scholar]
  4. Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: Pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol. 2012 Apr 10; 59:15:13371349.
    [Google Scholar]
  5. Formaggia L, Quarteroni A, Veneziani A. Cardiovascular Mathematics. Milan: Springer 2009.
    [Google Scholar]
  6. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007 Jun 26; 49:25:23792393.
    [Google Scholar]
  7. Liu SQ, Goldman J. Role of blood shear stress in the regulation of vascular smooth muscle cell migration. IEEE Trans Biomed Eng. 2001 Apr; 48:4:474483.
    [Google Scholar]
  8. Nerem RM. Hemodynamics and the vascular endothelium. J Biomech Eng. 1993 Nov; 115:4B:510514.
    [Google Scholar]
  9. Van der Heiden K, Gijsen FJ, Narracott A, Hsiao S, Halliday I, Gunn J, Wentzel JJ, Evans PC. The effects of stenting on shear stress: Relevance to endothelial injury and repair. Cardiovasc Res. 2013 Jul 15; 99:2:269275.
    [Google Scholar]
  10. Brugaletta S, Radu MD, Garcia-Garcia HM, Heo JH, Farooq V, Girasis C, van Geuns RJ, Thuesen L, McClean D, Chevalier B, Windecker S, Koolen J, Rapoza R, Miquel-Hebert K, Ormiston J, Serruys PW. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: Can the scaffold cap the plaque? Atherosclerosis. 2012 Mar; 221:1:106112.
    [Google Scholar]
  11. Gogas BD, King SB 3rd, Timmins LH, Passerini T, Piccinelli M, Veneziani A, Kim S, Molony DS, Giddens DP, Serruys PW, Samady H. Biomechanical assessment of fully bioresorbable devices. JACC Cardiovasc Interv. 2013 Jul; 6:7:760761.
    [Google Scholar]
  12. Wentzel JJ, Whelan DM, van der Giessen WJ, van Beusekom HM, Andhyiswara I, Serruys PW, Slager CJ, Krams R. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech. 2000 Oct; 33:10:12871295.
    [Google Scholar]
  13. Thury A, Wentzel JJ, Vinke RV, Gijsen FJ, Schuurbiers JC, Krams R, de Feyter PJ, Serruys PW, Slager CJ. Images in cardiovascular medicine. Focal in-stent restenosis near step-up: Roles of low and oscillating shear stress? Circulation. 2002 Jun 11; 105:23:e185e187.
    [Google Scholar]
  14. Gomez-Lara J, Garcia-Garcia HM, Onuma Y, Garg S, Regar E, De Bruyne B, Windecker S, McClean D, Thuesen L, Dudek D, Koolen J, Whitbourn R, Smits PC, Chevalier B, Dorange C, Veldhof S, Morel MA, de Vries T, Ormiston JA, Serruys PW. A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. JACC Cardiovasc Interv. 2010 Nov; 3:11:11901198.
    [Google Scholar]
  15. Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: Change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012 Jan; 33:1:1625b.
    [Google Scholar]
  16. Gogas BD, Garcia-Garcia HM, Onuma Y, Muramatsu T, Farooq V, Bourantas CV, Serruys PW. Edge vascular response after percutaneous coronary intervention: An intracoronary ultrasound and optical coherence tomography appraisal: From radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds. JACC Cardiovasc Interv. 2013 Mar; 6:3:211221.
    [Google Scholar]
  17. Gogas BD, Bourantas CV, Garcia-Garcia HM, Onuma Y, Muramatsu T, Farooq V, Diletti R, van Geuns RJ, De Bruyne B, Chevalier B, Thuesen L, Smits PC, Dudek D, Koolen J, Windecker S, Whitbourn R, McClean D, Dorange C, Miquel-Hebert K, Veldhof S, Rapoza R, Ormiston JA, Serruys PW. The edge vascular response following implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold and the XIENCE V metallic everolimus-eluting stent. First serial follow-up assessment at six months and two years: Insights from the first-in-man ABSORB Cohort B and SPIRIT II trials. EuroIntervention. 2013 Oct 22; 9:6:709720.
    [Google Scholar]
  18. Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, Kuehl W, Battaglia J, Dabbons S, Shamoon F, Flieshman B, Niederman A, Bass TA, STLLR Investigators . Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008 Jun 15; 101:12:17041711.
    [Google Scholar]
  19. Waxman S, Freilich MI, Suter MJ, Shishkov M, Bilazarian S, Virmani R, Bouma BE, Tearney GJ. A case of lipid core plaque progression and rupture at the edge of a coronary stent: Elucidating the mechanisms of drug-eluting stent failure. Circ Cardiovasc Interv. 2010 Apr; 3:2:193196.
    [Google Scholar]
  20. McDaniel MC, Samady H. The sheer stress of straightening the curves: Biomechanics of bioabsorbable stents. JACC Cardiovasc Interv. 2011 Jul; 4:7:800802.
    [Google Scholar]
/content/journals/10.5339/gcsp.2014.56
Loading
/content/journals/10.5339/gcsp.2014.56
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bioresorbable scaffoldscomputational fluid dynamics and virtual modeling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error