1887
6 - Al-Bayan University Scientific Conference
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

The mandibular canal (MC) serves as the pathway for the inferior alveolar neurovascular bundles, which terminate at the mental foramen.

The aim of the study was to compare the shape, size, and location of the MC inferior to the mandibular second molar of an Arab Iraqi population according to gender.

The study involved 200 CBCT images (100 males and 100 females) of the Arab population in Iraq, which were examined for the morphology of MC inferior to the mandibular second molar The measurements were shape and size. The location of MC includes distance from the MC to the buccal and lingual alveolar ridges, distance from the MC to the root, distance from the MC to buccolingual borders, and distance from the MC to the inferior border of the mandible.

Mandibular second molars present in 71 males and 60 females on the right side and 55 males and 64 females on the left side. The shape of MC was oval and irregular, with a significant difference between the genders on the right side but no significant difference on the left side. The size and location measurements were larger in males than in females, except for the distance from the MC to the lingual border, which was significantly higher in females. The distance from the MC to the root was zero in one case.

Before performing endodontic or surgical procedures involving the mandibular second molar, it is crucial to accurately identify the MC morphology particularly its location to avoid MC injury. This precise anatomical knowledge is not only essential for successful dental procedures but also plays a vital role in forensic investigations. Dentists, with their knowledge in craniofacial anatomy, are increasingly sought as experts in forensic and legal cases.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2024.absc.1
2024-11-28
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2024/6/jemtac.2024.absc.1.html?itemId=/content/journals/10.5339/jemtac.2024.absc.1&mimeType=html&fmt=ahah

References

  1. Nudell, Y. et al. Pharmacologic management of neuropathic pain. Oral and Maxillofacial Surgery Clinics. 34, 61–81 (2022). doi: 10.1016/j.coms.2021.09.002.
    [Google Scholar]
  2. Renton, T. Prevention of iatrogenic inferior alveolar nerve injuries in relation to dental procedures. Dent Update. 37, 350–363 (2010). doi: 10.12968/denu.2010.37.6.350.
    [Google Scholar]
  3. Jani, R. & Dave, D. Neurodental Complications: A Comprehensive Review. NeuroQuantology. 20, 1495 (2022). doi: 10.14704/nq.2022.20.10.NQ55114.
    [Google Scholar]
  4. Dwight, T. Human Anatomy: Including Structure and Development and Practical Considerations. (JB Lippincott Company, 1918).
    [Google Scholar]
  5. Assouline, S.L. et al. How useful is intraoperative cone beam computed tomography in maxillofacial surgery? An overview of the current literature. Int J Oral Maxillofac Surg. 50, 198–204 (2021). doi: 10.1016/j.ijom.2020.05.006.
    [Google Scholar]
  6. Hussain, R.A., Gangwani, P. & Miloro, M. Implant Surgery. Management of Complications in Oral and Maxillofacial Surgery. 47–78 (2022). doi: 10.1002/9781119710714.ch3.
    [Google Scholar]
  7. Fanibunda, K., Whitworth, J. & Steele, J. The management of thermomechanically compacted gutta percha extrusion in the inferior dental canal. Br Dent J. 184, 330–332 (1998). doi: 10.1038/sj.bdj.4809618.
    [Google Scholar]
  8. Escoda-Francoli, J., Canalda-Sahli, C., Soler, A., Figueiredo, R. & Gay-Escoda, C. Inferior alveolar nerve damage because of overextended endodontic material: a problem of sealer cement biocompatibility? J Endod. 33, 1484–1489 (2007). doi: 10.1016/j.joen.2007.09.003.
    [Google Scholar]
  9. Zou, X. et al. Expert consensus on irrigation and intracanal medication in root canal therapy. Int J Oral Sci. 16, 23 (2024). doi: 10.1038/s41368-024-00280-5.
    [Google Scholar]
  10. Blanas, N., Kienle, F. & Sandor, G.K.B. Injury to the inferior alveolar nerve due to thermoplastic gutta percha. Journal of oral and maxillofacial surgery. 60, 574–576 (2002). doi: 10.1053/joms.2002.31858.
    [Google Scholar]
  11. Waltrick, K.B. Nunes de Abreu Junior MJ, Corrêa M, Zastrow MD, Dutra VD. Accuracy of linear measurements and visibility of the mandibular canal of cone-beam computed tomography images with different voxel sizes: an in vitro study. J Periodontol 84, 68–77 (2013). doi: 10.1902/jop.2012.110524.
    [Google Scholar]
  12. Taha, O.B., Nawi, M.A.A., Abdullah, J.Y., Matheel, A.-R. & Yusof, A. Mandibular canal assessment in dentate and edentulous ridges of 400 Iraqi Arab and Kurdish populations using cone beam computed tomography. Saudi Dent J. (2024). doi: 10.1016/j.sdentj.2024.02.016.
    [Google Scholar]
  13. Bornstein, M.M., Lauber, R., Sendi, P. & Von Arx, T. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery. J Endod. 37, 151–157 (2011). doi: 10.1016/j.joen.2010.11.014.
    [Google Scholar]
  14. Braut, V., Bornstein, M.M., Kuchler, U. & Buser, D. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 2—analysis of edentulous sites. Int J Periodontics Restorative Dent. 34, 639–647 (2014). doi: 10.11607/prd.1895.
    [Google Scholar]
  15. AlAli, F. et al.. Anterior maxillary labial bone thickness on cone beam computed tomography. Int Dent J. 73, 219–227 (2023). doi: 10.1016/j.identj.2022.03.007.
    [Google Scholar]
  16. Agbetoba, A. et al. Educational utility of advanced three-dimensional virtual imaging in evaluating the anatomical configuration of the frontal recess. in International forum of allergy & rhinology. vol. 7 143–148 (Wiley Online Library, 2017). doi: 10.1002/alr.21864.
    [Google Scholar]
  17. Brühschwein, A. et al. Free DICOM-viewers for veterinary medicine. J Digit Imaging. 33, 54–63 (2020). doi: 10.1007/s10278-019-00194-3.
    [Google Scholar]
  18. Kovisto, T., Ahmad, M. & Bowles, W.R . Proximity of the mandibular canal to the tooth apex. J Endod. 37, 311–315 (2011). doi: 10.1016/j.joen.2010.11.030.
    [Google Scholar]
  19. Khorshidi, H., Raoofi, S., Ghapanchi, J., Shahidi, S. & Paknahad, M. Cone beam computed tomographic analysis of the course and position of mandibular canal. J Maxillofac Oral Surg. 16, 306–311 (2017). doi: 10.1007/s12663-016-0956-9.
    [Google Scholar]
  20. McMillin, S.L., Minchew, E.C., Lowe, D.A. & Spangenburg, E.E. Skeletal muscle wasting: The estrogen side of sexual dimorphism. American Journal of Physiology-Cell Physiology. 322, C24–C37 (2022). doi: 10.1152/ajpcell.00333.2021.
    [Google Scholar]
  21. Hart, D.A. Sex differences in musculoskeletal injury and disease risks across the lifespan: Are there unique subsets of females at higher risk than males for these conditions at distinct stages of the life cycle? Front Physiol. 14, 1127689 (2023). doi: 10.3389/fphys.2023.1127689.
    [Google Scholar]
  22. Cho, E.O. et al. The influence of climate and population structure on East Asian skeletal morphology. J Hum Evol. 173, 103268 (2022). doi: 10.1016/j.jhevol.2022.103268.
    [Google Scholar]
  23. Hilmi, A., Patel, S., Mirza, K. & Galicia, J.C. Efficacy of imaging techniques for the diagnosis of apical periodontitis: a systematic review. Int Endod J. 56, 326–339 (2023). doi: 10.1111/iej.13921.
    [Google Scholar]
  24. Conlogue, G.J., Nelson, A.J. & Lurie, A.G . Computed Tomography (CT), multi-detector computed Tomography (MDCT), micro-CT, and cone beam computed Tomography (CBCT). Advances in Paleoimaging. 111–178 (2020). doi: 10.4324/9781315203089-7.
    [Google Scholar]
  25. de Oliveira-Santos, C. et al. Assessment of variations of the mandibular canal through cone beam computed tomography. Clin Oral Investig. 16, 387–393 (2012). doi: 10.1007/s00784-011-0544-9.
    [Google Scholar]
  26. Gopal, S. & Sundaram, S . Sexual dimorphism by locating the mandibular canal in different positions using images from conebeam computed tomography. Am J Oral Med Radiol. 4, 43–46 (2017). doi: 10.21276/ajomr.2017.4.2.1.
    [Google Scholar]
  27. Senol, G.B., Tuncer, M.K., Nalcaci, N. & Aydin, K.C . Role of mandibular anatomical structures in sexual dimorphism in Turkish population: a radiomorphometric CBCT study. J Forensic Odontostomatol. 40, 53 (2022).
    [Google Scholar]
  28. Komal, A., Bedi, R.S., Wadhwani, P., Aurora, J.K. & Chauhan, H . Study of normal anatomy of mandibular canal and its variations in indian population using CBCT. J Maxillofac Oral Surg. 19, 8–105 (2020). doi: 10.1007/s12663-019-01224-x.
    [Google Scholar]
  29. Yoshioka, I. et al. Relationship between inferior alveolar nerve canal position at mandibular second molar in patients with prognathism and possible occurrence of neurosensory disturbance after sagittal split ramus osteotomy. Journal of oral and maxillofacial surgery. 68, 3022–3027 (2010). doi: 10.1016/j.joms.2009.09.046.
    [Google Scholar]
  30. Friedrich, R.E., Matschke, J. & Wilczak, W . Unilaterally enlarged mandibular foramina and canal associated with hyperplastic lymphatic tissue of inferior alveolar nerve: Case report and short literature survey. Anticancer Res. 39, 3991–4002 (2019). doi: 10.21873/anticanres.13554.
    [Google Scholar]
  31. Nguyen, J.D. & Duong, H . Anatomy, head and neck, mandibular foramen. in StatPearls [Internet] (StatPearls Publishing, 2022). doi: 10.3390/ijerph18073365.
    [Google Scholar]
  32. Shadlinski, V. & Abdullayev, A . Anatomical Peculiarities Of Mandibular Foramen. Journal Healthcare Treatment Development (JHTD). ISSN: 2799-1148 1, 1–5 (2021). doi: 10.3390/ijerph18073365.
    [Google Scholar]
  33. Rath, R., Sangamesh, N.C., Acharya, R.R. & Sharma, G . Sexual dimorphism of inferior alveolar canal location: a record-based CBCT study in eastern India. J Oral Maxillofac Pathol. 26, 277 (2022). doi: 10.4103/jomfp.jomfp_139_21.
    [Google Scholar]
  34. Aksoy, U., Aksoy, S. & Orhan, K . A cone-beam computed tomography study of the anatomical relationships between mandibular teeth and the mandibular canal, with a review of the current literature. Microsc Res Tech. 81, 308–314 (2018). doi: 10.1002/jemt.22980.
    [Google Scholar]
  35. Bürklein, S., Grund, C. & Schäfer, E . Relationship between root apices and the mandibular canal: a cone-beam computed tomographic analysis in a German population. J Endod. 41, 1696–1700 (2015). doi: 10.1016/j.joen.2015.06.016.
    [Google Scholar]
  36. Puciło, M., Lipski, M., Sroczyk-Jaszczyńska, M., Puciło, A. & Nowicka, A . The anatomical relationship between the roots of erupted permanent teeth and the mandibular canal: a systematic review. Surgical and Radiologic Anatomy. 42, 529–542 (2020). doi: 10.1007/s00276-019-02404-7.
    [Google Scholar]
  37. Ahmed, A.A., Ahmed, R.M., Jamleh, A. & Spagnuolo, G . Morphometric Analysis of the Mandibular Canal, Anterior Loop, and Mental Foramen: A Cone-Beam Computed Tomography Evaluation. Int J Environ Res Public Health. 18, 3365 (2021). doi: 10.3390/ijerph18073365.
    [Google Scholar]
  38. Sghaireen, M.G. et al. A CBCT based three-dimensional assessment of mandibular posterior region for evaluating the possibility of bypassing the inferior alveolar nerve while placing dental implants. Diagnostics. 10, 406 (2020). doi: 10.3390/diagnostics10060406.
    [Google Scholar]
  39. Bressan, E. et al. Ridge dimensions of the edentulous mandible in posterior sextants: an observational study on cone beam computed tomography radiographs. Implant Dent. 26, 66–72 (2017). doi: 10.1097/ID.0000000000000489.
    [Google Scholar]
/content/journals/10.5339/jemtac.2024.absc.1
Loading
/content/journals/10.5339/jemtac.2024.absc.1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error