1887
Volume 4 (2023) Number 2
  • EISSN: 2708-0463

Abstract

باتت حاجة البشرية ملحةً في الحصول على مصادر جديدة للمياه؛ للتغلب على مشكلة ندرة المياه التي تواجه معظم دول العالم. ويقوم الباحثون بدور فعّال في تلك الحلول عبر تقنيات تحلية مياه البحر ومعالجة وإعادة استخدام مياه الصرف الصحي والصناعي والحصول على المياه من الهواء المشبع بالبخار وغيرها. وتقنية معالجة مياه الصرف تعد من أسهل الحلول وأقلها تكلفة؛ لسهولة تنفيذها، وأنها يمكن أن تنتج كميات كبيرة من المياه المعالجة والصالحة للاستخدام. ومن بين التقنيات الأكثر استخداماً في علاج مياه الصرف الامتزاز (امتزاز المواد الضارة الموجودة في مياه الصرف على سطح مواد نانومترية حديثة وفعالة)؛ حيث إن عملية الامتزاز تعتمد بشكل أساسي على المساحة السطحية للمواد المازة ووجود مجموعات وظيفية على سطحها تسهّل من ترابط جزيئات المادة الممتزة؛ لذا فالمواد النانومترية الحديثة لها دور فعال وحيوي في هذه العملية. ومن أهم هذه المواد أكسيد الجرافين الذي له مساحة سطحية عالية جدّاً والذي تم تحضيره في شكل مسامي من خلال طريقة التجميد الجاف. وأظهرت التحاليل أن أكسيد الجرافين عبارة عن رقائق بها مساحة سطح عالية وكثافة عالية من المجموعات الأكسجينية على الحواف. وتوفر هذه العملية المزيد من مواقع الامتزاز والمراكز النشطة لامتزاز أيونات المعادن الثقيلة (الحديد وغيره). وقد أثبت أكسيد الجرافين قدرته على إزالة أيونات الحديد مما يجعله مادة جيدة لإزالة أيونات المعادن الثقيلة في معالجة المياه. أيضاً المواد النانوية الأخرى مثل أكسيد الكوبالت الموزع في مصفوفة من السيليكا أظهر قدرة عالية على إزالة صبغة أزرق المثيلين من مياه الصرف الصناعي. وأثبتت كذلك مواد كربونية منشطة من مخلفات زراعية قدرتها على إزالة كبريتيد الهيدروجين من المياه البترولية. كما تم دراسة مواد الكربون النانوي متعدد الجدار والمطعم بمادة أكسيد الحديد المغناطيسي لإزالة أيونات الزئبق من المياه. وقد أثبتت الدراسات أن للمواد النانومترية الحديثة قدرة عالية على إزالة الملوثات (صبغات وأيونات معادن) من المياه؛ ومن ثم يمكن إعادة استخدام المياه في أغراض شتى، منها الزراعة.

With water scarcity rising as a global issue, finding solutions for new sources of water has become a pressing need. Researchers are playing an active role in finding such solutions like seawater desalination techniques, treatment and reuse of sewage and industrial wastewater, obtaining water from steamy air, and other techniques. Wastewater treatment technology is considered as one of the easiest and least expensive solutions due to its ease of implementation and its capability of producing large quantities of treated water suitable for usage. One of the techniques used for wastewater treatment, and most widely used is adsorption (adsorption of harmful substances present in wastewater on the surface of advanced nanomaterials). The adsorption process depends mainly on the surface area of the adsorbent materials and the presence of functional groups on their surfaces that facilitate the bonding of adsorbent particles, so advanced nanomaterials have an effective and vital role in this process. One of the most important of these materials is graphene, which has a very high surface area, and it has been prepared in the form of a porous aerogel form through the freeze-drying method. Analysis showed that graphene oxide consists of sheets with a high surface area and a high density of oxygen groups at the edges. These sheets provide more adsorption sites and active centers for adsorption of heavy metal ions (iron and others). Graphene oxide has proved to be effective for removing heavy metal ions in water treatment. Other nanomaterials such as cobalt oxide distributed in a matrix of silica showed a high ability to remove methylene blue dye from industrial wastewater. In addition, activated carbon materials from agricultural waste, which have proven their ability to remove hydrogen sulfide from petroleum wastewater. Also, multi-walled carbon nanotubes doped with magnetic iron oxide were studied to remove mercury ions from water. In conclusion, studies have shown that the advanced nanomaterials have a high ability to remove pollutants (dyes and metal ions) from water for reusage for various purposes, including agriculture.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2023.13
2023-10-31
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2023/2/ajsr.2023.issue2.13.html?itemId=/content/journals/10.5339/ajsr.2023.13&mimeType=html&fmt=ahah

References

  1. Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: a review of water interactions, applications in composites, and water treatment. Chemical Reviews. 2023; 123: (5);2016–2048.
    [Google Scholar]
  2. Öner M, Ata O, Yapıcı S. Bipolar membrane electrodialysis for mixed salt water treatment: determination of optimum conditions by topsis-based taguchi method. International Journal of Environmental Science and Technology. 2023; 20:(1); 587–604.
    [Google Scholar]
  3. Yushchenko V, Velyugo Е, Romanovski V. Influence of ammonium nitrogen on the treatment efficiency of underground water at iron removal stations. Groundwater for Sustainable Development. 2023; 22; 100943.
    [Google Scholar]
  4. WHO. Guidelines for drinking-water quality. World Health Organization. 2011; 216; 303–304.
  5. Kumar R, Sudhaik A, Raizada P, Nguyen V-H, Van Le Q, Ahamad T, et al. Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere. 2023; 337; 139267.
    [Google Scholar]
  6. Arenas LR, Le Coustumer P, Gentile SR, Zimmermann S, Stoll S. Removal efficiency and adsorption mechanisms of CeO2 nanoparticles onto granular activated carbon used in drinking water treatment plants. Science of the Total Environment. 2023; 856; 159261.
    [Google Scholar]
  7. Aryee AA, Liu Y, Han R, Qu L. Bimetallic adsorbents for wastewater treatment: A review. Environmental Chemistry Letters. 2023; 1–25.
    [Google Scholar]
  8. Ali GAM, Barhoum A, Gupta VK, Nada AA, El-Maghrabi H, Kanthasamy R, et al. High surface area mesoporous silica for hydrogen sulfide effective removal. Current Nanoscience. 2020; 16:(2); 226–234.
    [Google Scholar]
  9. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, et al. Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids. 2016; 218; 191–197.
    [Google Scholar]
  10. Alhasan HS, Alahmadi N, Yasin SA, Khalaf MY, Ali GAM. Low-cost and eco-friendly hydroxyapatite nanoparticles derived from eggshell waste for cephalexin removal. Separations. 2022; 9:(1); 10.
    [Google Scholar]
  11. Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. Science of The Total Environment. 2023; 863; 160871.
    [Google Scholar]
  12. Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, et al. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Frontiers of Chemical Science and Engineering. 2023; 17:(3); 249–275.
    [Google Scholar]
  13. Khan MD, Singh A, Khan MZ, Tabraiz S, Sheikh J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. Journal of Water Process Engineering. 2023; 53; 103579.
    [Google Scholar]
  14. Mfarrej MFB, Wang X, Fahid M, Saleem MH, Alatawi A, Ali S, et al. Floating treatment wetlands (FTWs) is an innovative approach for the remediation of petroleum hydrocarbons-contaminated water. Journal of Plant Growth Regulation. 2023; 42:(3); 1402–1420.
    [Google Scholar]
  15. Wang M. Migration rules of petroleum pollutants in water and soil: a review. Petroleum Science and Technology. 2023; 1–16.
    [Google Scholar]
  16. Zhou H, Huang X, Jiang L, Shen Q, Sun H, Yi M, et al. Improved degradation of petroleum contaminants in hydraulic fracturing flowback and produced water using laccase immobilized on functionalized biochar. Environmental Technology & Innovation. 2023; 32; 103280.
    [Google Scholar]
  17. Lee SP, Ali GAM, Algarni H, Chong KF. Flake size-dependent adsorption of graphene oxide aerogel. Journal of Molecular Liquids. 2019; 277; 175–180.
    [Google Scholar]
  18. Sadegh H, Ali GAM, Agarwal S, Gupta VK. Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. International Journal of Environmental Research. 2019; 13:(3); 523–531.
    [Google Scholar]
  19. Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H. Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures. 2019; 106; 150–155.
    [Google Scholar]
  20. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, et al. MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. Journal of Molecular Liquids. 2018; 258; 345–353.
    [Google Scholar]
  21. Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, et al. Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. Journal of Molecular Liquids. 2020; 298; 112001.
    [Google Scholar]
  22. Abdel Ghafar HH, Ali GAM, Fouad OA, Makhlouf SA. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment. 2015; 53:(11); 2980–2989.
    [Google Scholar]
/content/journals/10.5339/ajsr.2023.13
Loading
/content/journals/10.5339/ajsr.2023.13
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error