1887
Carbon Capture and Storage Workshop, Texas A&M University in Qatar
  • ISSN: 2220-2765
  • E-ISSN:

ملخص

Abstract

Large improvements in separations technology will require novel materials with enhanced properties and performance. The fundamental interlinks for success in merging synthesis and process incorporation are the structure, relevant physical/chemical properties, and performance of new materials. Specific materials with these interlinks are room-temperature ionic liquids (RTILs) and their polymers and composites. As a chemical platform, RTILs have an enormous range of structural variation that can provide the ability to “tune” their properties and morphology for a given application. Introduction of chemical specificity into the structure of RTIL-based materials is an additional key component. Membrane separation is the focus as a process for implementation. There have not been new materials successfully developed for this process in thirty years. For CO  capture, the target improvement in productivity is two orders of magnitude or more compared to commercial materials currently available.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/stsp.2012.ccs.15
٢٠١٢-١٢-١٩
٢٠٢٤-٠٨-٢٤
Loading full text...

Full text loading...

/deliver/fulltext/stsp/2012/2/stsp.2012.ccs.15.html?itemId=/content/journals/10.5339/stsp.2012.ccs.15&mimeType=html&fmt=ahah

References

  1. Figueroa J.D.  Advances in CO 2  capture technology - the US Departments of Energy’s carbon sequestration program. Int. J. Greenhouse Gas Control. 2008; 2::9.
    [Google الباحث العلمي]
  2. Rochelle G.T.  Cost and performance baseline for fossil energy plants. Science. 2009; 325::1652.
    [Google الباحث العلمي]
  3. Shelly S.  Capturing CO 2 : Membrane systems move forward. Chem. Eng. Prog. 2009; 105::4247.
    [Google الباحث العلمي]
  4. NETL, Existing plants—Emissions and capture program goals, 2009, US Department of Energy.
  5. Favre E.J.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?. J. Membr. Sci. 2007; 294::50.
    [Google الباحث العلمي]
  6. Merkel T.C., Lin H., Wei X. and Baker R.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci.. (in press, Corrected Proof)
    [Google الباحث العلمي]
  7. Merkel T., Lin H., Wei X., He J., Firat B., Amo K., Daniels R. and Baker R. In: NETL Review Meeting 2009.
  8. Welton T.  Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999; 99::2071.
    [Google الباحث العلمي]
  9. Ohno H.  Molten salt type polymer electrolytes. Electrochim. Acta. 2001; 46::1407.
    [Google الباحث العلمي]
  10. Ding S., Tang H., Radosz M. and Shen Y.  Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci. A: Polym. Chem. 2004; 42::5794.
    [Google الباحث العلمي]
  11. Washiro S., Yoshizawa M., Nakajima H. and Ohno H.  Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer. 2004; 45::1577.
    [Google الباحث العلمي]
  12. Ikeda A., Sonoda K., Ayabe M., Tamaru S., Nakashima T., Kimizuka N. and Shinkai S.  Gelation of ionic liquids with a low molecular-weight gelator showing Tgel above 100 C . Chem. Lett. 2001; 30::1154.
    [Google الباحث العلمي]
  13. Bara J.E., Hatakeyama E.S., Gin D.L. and Noble R.D.  Improving CO 2  permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym. Adv. Technol. 2008; 19::1415.
    [Google الباحث العلمي]
  14. Wijmans J.G. and Baker R.W.  The solution-diffusion model: A review. J. Membr. Sci. 1995; 107::
    [Google الباحث العلمي]
  15. Camper D., Bara J., Koval C. and Noble R.  Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2006; 45::6279.
    [Google الباحث العلمي]
  16. Bara J.E., Gabriel C.J., Lessmann S., Carlisle T.K., Finotello A., Gin D.L. and Noble R.D.  Enhanced CO 2  separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 2007; 46::5380.
    [Google الباحث العلمي]
  17. Carlisle T.K., Bara J.E., Gabriel C.J., Noble R.D. and Gin D.L.  Interpretation of CO 2  solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind. Eng. Chem. Res. 2008; 47::7005.
    [Google الباحث العلمي]
  18. Bara J.E., Gabriel C.J., Carlisle T.K., Camper D.E., Finotello A., Gin D.L. and Noble R.D.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J. 2009; 147::43.
    [Google الباحث العلمي]
  19. Muldoon M.J., Aki S.N.V.K., Anderson J.L., Dixon J.K. and Brennecke JF.  Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B. 2007; 111::9001.
    [Google الباحث العلمي]
  20. Bara J.E., Gabriel C.J., Hatakeyama E.S., Carlisle T.K., Lessmann S., Noble R.D. and Gin D.L.  Improving CO 2  selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J. Membr. Sci. 2008; 321::3.
    [Google الباحث العلمي]
  21. Carlisle T.K., Bara J.E., Lafrate A.L., Gin D.L. and Noble R.D.  Main-chain imidazolium polymer membranes for CO 2  separations: An initial study of a new ionic liquid-inspired platform. J. Membr. Sci. 2010; 359::37.
    [Google الباحث العلمي]
  22. Bara J.E., Camper D.E., Gin D.L. and Noble R.D.  Room-temperature ionic liquids and composite materials: platform technologies for CO 2  capture. Accounts Chem. Res. 2010; 43::1, 152.
    [Google الباحث العلمي]
  23. Hudiono Y.C., Carlisle T.K., Bara J.E., Zhang Y., Gin D.L. and Noble R.D.  A three-component mixed-matrix membrane with enhanced CO 2  separation properties based on zeolites and ionic liquid materials. J. Membr. Sci. 2010; 350::1–2, 117.
    [Google الباحث العلمي]
  24. Simons K., Niemeijer K., Bara J.E., Noble R.D. and Wessling M.  How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO 2  permeation?. J. Membr. Sci. 2010; 360::1–2, 202.
    [Google الباحث العلمي]
  25. Noble R.D.  Perspectives on ionic liquids and ionic liquid membranes. J. Membr. Sci. 2011; 369::1–2, 1.
    [Google الباحث العلمي]
  26. Gin D.L. and Noble R.D.  Designing next-generation membranes for chemical separations. Science. May 6, 2011; 332::674676.
    [Google الباحث العلمي]
  27. Bara J.E., Carlisle T.K., Gabriel C.J., Camper D., Finotello A., Gin D.L. and Noble R.D.  A guide to CO2  separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009; 48::6, 2739.
    [Google الباحث العلمي]
/content/journals/10.5339/stsp.2012.ccs.15
Loading
/content/journals/10.5339/stsp.2012.ccs.15
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Review Article
هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error