1887
Volume 5(2024) Number 1
  • EISSN: 2708-0463

Abstract

العنب اليمني من ألذ أنواع العنب، ويُستهلك بشكل عنب مائدة أو يُجَفَّف إلى زبيب ذي مذاق متميز وجودة عالية، رغم الأهمية الاقتصادية العالية لهذا المحصول إلا أن هناك قلةً في البحوث المتعلقة بإكثاره خضريّاً، وأُجري البحث بهدف دراسة تأثير حامض آندول البيوتريك (IBA) والصنف على تجذير العُقل الخشبية للعنب اليمني في مشاتل أورقانك يمن في العاصمة اليمنية صنعاء. وجُمعت العقل المتخشبة للأصناف الثلاثة قيد الدراسة (العاصمي (B1)، الرازقي (B2)، الأسود (B3) في نهاية الشتاء ونهاية طور الراحة للأشجار ونُقلت للمشتل، وتُرك النصف منها كشاهد (A1) وعومل النصف الآخر بواسطة IBA بتركيز 1000 مليغرام/لتر(A2)، وزُرعت كل العقل في بيئة تجذير موحدة، وصُمم البحث في تجربة عاملية بعاملين وفقاً للتصميم الكامل العشوائية (CRD)، كما دُرست مجموعة من صفات النمو الجذري والخضري علاوةً على النسبة المئوية للتجذير بعد مرور 58 يوماً من الزراعة. وأظهرت النتائج تسجيل عامل الصنف فروقاً معنوية للصفات المدروسة: النسبة المئوية للعقل التي كونت كالساً%، والنسبة المئوية للتجذير%، وعدد الجذور/عقلة، وطول الجذر (سم)، وقطر الجذر (مم)، في حين سجلت المعاملة A2 قيمة أعلى (33.88%) بفرق معنوي على الشاهد A1 (9.52%) في النسبة المئوية للعقل التي كونت كالساً، وكذلك في صفة قطر الجذر (1.77مم، 1.42مم) على الترتيب، بينما كان اختلاف القيم لبقية الصفات المدروسة غير معنوي. والتداخل من جهته أظهر أن الصنف العاصمي في معاملة (A1) ومعاملة (A2) سجل بشكل معنوي أعلى القيم (100%، 76.84%) على الترتيب مقارنةً بالصنفين الآخرين في كلا المعاملتين، وذلك لصفة النسبة المئوية للتجذير، بالمقابل سجل الصنف الأسود في كلا المعاملتين A1 وA2 أعلى القيم (46.66%، 28.57%) على الترتيب مقارنة بالصنفين الآخرين، وذلك لصفة النسبة المئوية للعقل التي كونت كالساً، أيضًا تفوق الصنف العاصمي في عدد، وطول، وقطر الجذر في المعاملتين A1 وA2 مقارنةً بالصنفين الآخرين لنفس المعاملتين والصفات. وعلى النقيض من ذلك، لم تُسَجَّل فروقٌ معنوية بين A1 وA2 والأصناف الثلاثة في النسبة المئوية للنمو الخضري، وعدد الأوراق/عقلة، وارتفاع العقلة. وأثبت البحث كفاءة إكثار العنب بطريقة العقلة الساقية المتخشبة بوجود الهرمون النباتي أو غيابه، ولعب الصنف دوراً معنويّاً أكثر مقارنة بوجود أو غياب الهرمون.

Yemeni grapes are among the most delectable grape varieties. They are consumed as table grapes or as raisins of superior flavor and quality. Despite the economic significance of this grape, little research has been conducted on its vegetative propagation. The purpose of the study was to assess the effect of indole butyric acid (IBA) and the cultivar on the rooting of hardwood cuttings of Yemeni grapes in Sana'a's Organic Yemen nurseries. The hardwood cuttings of the three studied grape cultivars (Al-Asmi (B1), Al-Razqi (B2), and Al-Aswad (B3) were collected at the end of winter and the end of the trees' dormant phase and then transferred to the nursery for further treatments. Half were left untreated (A1), while the other half were treated with IBA at a concentration of 1000 mg/L (A2), and all cuttings were planted in the same rooting medium. The research consisted of two factors and was designed as a factorial experiment in accordance with a completely randomized design (CRD). In addition to the percentage of rooting after 58 days of planting, the set of root and vegetative growth characteristics was investigated. The results revealed that the cultivar factor recorded significant differences for the studied traits, i.e. the percentage of cuttings with callus%, the percentage of rooting%, the number of roots/cuttings, the root length (cm), and the root diameter (mm), whereas the treatment with the hormone (A2) recorded a higher value (33.88%) with a significant difference over the control (A1) (9.52%) in the characteristic of the percentage of cuttings that formed a callus, as well as in contrast, the Al-Aswad CV recorded in both treatments A1 and A2 the highest values (46.66% and 28.57%) compared to the other two cultivars with respect to the percentage of rooting. In contrast, no significant differences were observed between A1 and A2 and the three cultivars in terms of vegetative growth percentage, number of leaves per cutting, or cutting height (cm). The research demonstrated the efficacy of grape propagation by stem cuttings in the presence or absence of the plant hormone, with the cultivar playing a more significant role than the presence or absence of the hormone.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.4
2024-04-30
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/1/AJSR.2024.issue1.4.html?itemId=/content/journals/10.5339/ajsr.2024.4&mimeType=html&fmt=ahah

References

  1. Arab Organization for Agricultural Development. Guide for grape cultivation and handling. League of Arab States; 2020. p. 3. (https://www.aoad.org/GrapsGuide2021.pdf).
  2. Khan N, Fahad S, Naushad M, Faisal S. Grape production critical review in the world; 2020. ‏55 p. http://dx.doi.org/10.2139/ssrn.3595842
    [Google Scholar]
  3. NC Soybean Producers Association. Annual agricultural statistics book. General administration of agricultural statistics and information. Republic of Yemen: Ministry of Agriculture and Irrigation; 2020. p. 24.
  4. Seccia A, Viscecchia R, Nardone G. Table grapes as functional food: Consumer preferences for health and environmental attributes. BIO Web of Conferences. 2019;15:03011. https://doi.org/10.1051/bioconf/20191503011
    [Google Scholar]
  5. Nowshehri JA, Bhat ZA, Shah MY. Blessings in disguise: Biofunctional benefits of grape seed extracts. Food Research International. 2015; 77:(part 3):333–348.
    [Google Scholar]
  6. Perko A, Ivančič A, Vršič S. Testing different methods of grape seed germination. Vitis. 2019; 58:(4):151–152.
    [Google Scholar]
  7. Lee N, Wetzstein HY. In vitro propagation of muscadine grape by axillary shoot proliferation. Journal of the American Society for Horticultural Science. 1990; 115:(2):324–329.
    [Google Scholar]
  8. Hashemi SAASathyanarayana BNSharaf Z. In vitro propagation of grape (Vitis vinifera L.) cv. Thompson Seedless. Indian Journal of Pure & Applied Biosciences. 2020; 8:(5):421–428. http://dx.doi.org/10.18782/2582-2845.8347.
    [Google Scholar]
  9. Hartmann HTKester DEDavies Jr FT, Geneve RLWilson S. Plant propagation: Principles and practices. 8th ed. New Delhi, India: Pearson Education; 2017.
    [Google Scholar]
  10. Ollat N, Bordenave L, Tandonnet JPBoursiquot JMMarguerit E. Grapevine rootstocks: Origins and perspectives. Acta Horticulturae. 2016;1136:11–22. https://doi.org/10.17660/ActaHortic.2016.1136.2
    [Google Scholar]
  11. Assunção M, Canas S, Cruz S, Brazão J, Zanol GCEiras-Dias JE. Graft compatibility of Vitis spp.: The role of phenolic acids and flavanols. Scientia Horticulturae. 2016;207:140–145. https://doi.org/10.1016/j.scienta.05.020
    [Google Scholar]
  12. Castro PRMelotto E, Soares FCPassos IRSPommer CV. Rooting stimulation in muscadine Grape cuttings. Scientia Agricola. 1994; 51:(3):436–445.
    [Google Scholar]
  13. El Shaima M, El Botaty MSSaleh MM. Effect of some natural substances on grape cuttings rooting. Middle East Journal of Agriculture Research. 2018; 7:(4):1702–1709.
    [Google Scholar]
  14. Muttulani MAJJ. Grape (Vitis vinifera L.) propagation using different types of cuttings and root-initiating substances. Journal of Agricultural Research, Development, Extension and Technology. 2022; 4:(1):1–9.
    [Google Scholar]
  15. Noyce PWOffler CESteel CCEnright JMGrof CPL. Methods for continual production of grapevine plants grown from green cuttings, with repeated budburst induction, in an environmentally controlled greenhouse. Australian Journal of Grape and Wine Research. 2022; 28:(1):86–94.
    [Google Scholar]
  16. Garande VKGawade MHSapkal KTGurav SB. Effect of IBA and number of internodes on rooting of stem cuttings of grape rootstocks. Agricultural Science Digest. 2002; 22:(3):176–178.
    [Google Scholar]
  17. Hamooh BT. The influence of stem cutting length and IBA treatments on propagation of native Saudi Arabian grapevine. Arab Universities Journal of Agricultural Sciences. 2005; 13:(2):453–458.
    [Google Scholar]
  18. Jamal Uddin AFMRakibuzzaman M, Raisa I, Maliha M, Husna MA. Impact of natural substances and synthetic hormone on grapevine cutting. Journal of Bioscience and Agriculture Research. 2020; 25:(01):2069–2074. https://doi.org/10.18801/jbar.250120.253.
    [Google Scholar]
  19. Kumar N, Sahare H, Beniwal B. Impact of natural and synthetic growth hormones on shooting of grape hardwood cuttings (Vitis vinifera L) cv. Punjab Macs Purple. Biological Forum – An International Journal. 2022; 14:(3):490–494.
    [Google Scholar]
  20. Beniwal B, Kumar N, Kour H, Pathlan N, Chhabra A. The influence of plant growth regulators on the rooting of grapes (Vitis venifera) wood cutting cv. Thompson Seedless. The Pharma Innovation Journal. 2022; 11:(5):1119–1122.
    [Google Scholar]
  21. Singh KKChauhan JS. A review of vegetative propagation of grape (Vitis vinifera L) through cutting. Global Journal of Bio-Sciences and Biotechnology. 2020; 9:(2):50–55.
    [Google Scholar]
  22. Górnik K, Grzesik M, Romanowska-Duda B. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. Journal of Fruit and Ornamental Plant Research. 2008;16:333–343.
    [Google Scholar]
  23. Gordillo MGCohen ACRogé M, Belmonte M, Gonzalez CV. Effect of quick-dip with increasing doses of IBA on rooting of five grapevine rootstocks grafted with ‘Cabernet Sauvignon’. Vitis. 2022; 61:(4):147–152. http://dx.doi.org/10.5073/vitis.2022;61.147-152
    [Google Scholar]
  24. Al-Shawish F. Evaluation of some Yemeni grape cultivars according to their propagation, and fruit morphological characters and chemical properties. Arab Universities Journal of Agricultural Sciences. 2010; 18:(2):239–246.
    [Google Scholar]
  25. Al-Rawi AKAl-Duri AH. Nurseries and plant propagation. Iraq: Dar Al-Kutub for Printing and Publishing. University of Al Mosul. Ministry of Higher Education and Scientific Research; 1991.
    [Google Scholar]
  26. Gomez KAGomez AA. Statistical procedures for agricultural research. New York: John Wiley; 1984.
  27. Sastry EVD. Essentials of agricultural statistics. Jaipur, India: Pointer Publishers; 2007.
  28. Eed AMBurgoyne AH. Effect of different rooting media and plant growth regulators on rooting of Jojoba (Simmondsia chinensis (Link) Schneider) semi-hard wood cuttings under plastic tunnel conditions. In: Sandhu S, Yingthawornsuk T. (eds.) Proceedings of the International Conference on Agricultural, Ecological and Medical Sciences, 6–7 February 2014, Bali, Indonesia; 2014. p. 14–17.
    [Google Scholar]
  29. Eed AMBurgoyne AH. Propagation of Simmondsia chinensis (Link) Schneider by stem cuttings. Biological and Chemical Research. 2015;2015:268–275.
    [Google Scholar]
  30. Eed AMBurgoyne AH. Effect of cutting type, collection time of cutting, plant sex, stem wounding method and presence or absence of leaves on rooting and growth of jojoba shrub cuttings. International Journal of Advances in Scientific Research and Engineering (IJASRE). 2019; 5:(10):347–355.
    [Google Scholar]
  31. Eed AMAlbana’a, B, Almaqtari S. The effect of growing media and stem cutting type on rooting and growth of Bougainvillea spectabilis plants. University of Aden Journal of Natural and Applied Sciences. 2015; 19:(1):141–147.
    [Google Scholar]
  32. Eed AMAlshadadi AAAqlan SN. The effect of different concentrations of naphthalene acetic acid (NAA) and the type of cuttings on the rooting of Ficus (Ficus nitida Thunb.) under plastic tunnel conditions. University Researcher Journal of Natural and Applied Sciences. 2017; 2:(33):21–28.
    [Google Scholar]
  33. Eed AMAlbukhiti OAAl-hajj AHSaif NMAlhakimi KA. The effect of cutting type (terminal, middle, basal) and cultivation conditions (covered, exposed) on the rooting of cuttings of fig, mulberry, and pomegranate trees. Aden University Journal of Natural and Applied Sciences. 2020; 24:(1):43. https://doi.org/10.47372/uajnas.2020.n1.a04
    [Google Scholar]
  34. Eed AM, Al Haj AH. Vegetative propagation of tamarisk trees (Tamarix aphylla) by stem cuttings in plastic bags and under plastic tunnel conditions. Syrian Journal of Agricultural Research. 2023; 10:(4):263–271. (https://agri-research-journal.net/?p=8228)
    [Google Scholar]
  35. Al-Hajj AHEed AMMani MAMohammed SQAl-Sufyani MM. The effect of different levels of the plant hormone indole butyric acid (IBA) and the type of cuttings on the rooting and vegetative growth of cuttings of the potato plant Solanum tuberosum L. var. Panamera under plastic tunnel conditions. Aden University Journal of Natural and Applied Sciences. 2019; 23:(2):305–315. (https://uajnas.adenuniv.com/index.php/uajnas/article/download/30/139).
    [Google Scholar]
  36. Chee PP. High frequency of somatic embryogenesis and recovery of fertile cucumber plants. HortScience. 1990; 25:(7):792–793.
    [Google Scholar]
  37. Evans DASharp WRFilck CE. Growth and behavior of cell culture: Embryogenesis and organogenesis. In: Thrope TA (ed.) Plant tissue culture: Method and applications in agriculture. New York: Academic Press; 1981. p. 45–113.
    [Google Scholar]
  38. Ho WJ, Vasil IK. Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasm. 1983;118:169–180. http://dx.doi.org/10.18782/2582-2845.8347
    [Google Scholar]
  39. Jaiswal VSNarayan P. Regeneration of plantlets from the callus of stem segments of adult plants of Ficus religiosa L. Plant Cell Reports. 1985;4:256–258.
    [Google Scholar]
  40. Mamun ANKIslam R, Reza MAJoadar OI. In vitro differentiation of plantlet of tissue culture of Samonea saman. Plant Tissue Culture. 1996;6:1–5.
    [Google Scholar]
  41. Irene WMAlumiro HLAsava KKAgwanda COAnami SE. Effects of genotype and plant growth regulators on callus induction in leaf cultures of Coffea arabica L. F1 hybrid. Journal of Plant Biochemistry & Physiology. 2019; 7:(2):1–12.
    [Google Scholar]
  42. López APÁbrams R. Effect of growth regulators on the rooting of grape cuttings. Journal of Agriculture of the University of Puerto Rico. 1960; 44:(2):70–76.
    [Google Scholar]
  43. Kelen M, Ozkan G. Relationships between rooting ability and changes of endogenous IAA and ABA during the rooting of hardwood cuttings of some grapevine rootstocks. European Journal of Horticultural Science. 2003; 68:(1):8–13.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2024.4
Loading
/content/journals/10.5339/ajsr.2024.4
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error