1887
Volume 5(2024) Number 1
  • EISSN: 2708-0463

Abstract

طُبِّقت طرق التّوصيف الفيزيائي-الكيميائي للمواد الطّبيعية الغنيّة بالكلسيات لتحديد كفاءتها في إزالة أيونات الرّصاص والكادميوم من محاليلها المائيّة. وجُمعت عيّنات معدن الدّولوميت الطّبيعي من موقع جبل رهاش جنوب تونس وطُحنت لاستخدامها في إزالة أيونات الرّصاص والكادميوم من محاليلهما المائيّة. وأُجريت تجارب الإزالة على دفعات عن طريق خلط مسحوق الدّولوميت بنسب محدّدة مع محلول معدني يحتوي على أيونات الرّصاص والكادميوم، ثم وُضع الخليط على هزّاز كهربائي لمدّة 60 دقيقة، بسرعة اهتزاز 200 دورة/دقيقة، عند درجة حرارة الغرفة (25 درجة مئويّة)، وقيمة الأس هيدروجيني 6. كان تركيز الدّولوميت 3 غرامات/لتر بينما الكادميوم والرّصاص 10 و100 ملي غرام/لتر على التّوالي. وأظهرت النّتائج أنّ عيّنات الدّولوميت محلّ الدّراسة تتكوّن من أكاسيد الكالسيوم والمغنيسيوم وبعض من الشّوائب الأخرى. وكشفت بيانات الامتزاز أن عيّنات الدّولوميت المُجمّعة من متكوّن رهاش الترياسي (جنوب تونس) أزالت كميات كبيرة من أيونات الرّصاص والكادميوم من محاليلهما. إذ حقّقت كفاءة إزالة 24.80 - 33.25 ملي غرام رصاص/غرام دولوميت و1.31- 1.77 ملي غرام كادميوم/غرام دولوميت. كما أوضحت البيانات أيضاً أن أكثر من 95% من السّعة الامتزازيّة الكليّة تحقّقت في 30 دقيقة من التقليب، ولكن استمرّ التّقليب لمدّة 60 دقيقة للوصول لحالة الاتّزان. وأشارت هذه النّتائج إلى أن دولوميت متكوّن جبل رهاش الترياسي، بجنوب تونس، يمكن استخدامها بفاعليّة لإزالة أيونات الرّصاص والكادميوم من المحاليل المائيّة.

Physico-chemical characterization of naturally abundant carbonates has been undertaken to evaluate their potentialities in the removal of lead and cadmium ions in aqueous systems. Powdered dolomite samples, collected from the Jebel Rehach location, southern Tunisia, were used in their natural form for the removal of both cadmium and lead in aqueous conditions. The removal experiments were carried out in batch by mixing known amount of dolomite powder with a metal solution (lead or cadmium). The mixture was shaken at 200 rpm under the experimental conditions of pH 6, temperature (25°C), dolomite concentration 3g/L, and cadmium (10 mg/L) and lead (100mg/L) solutions. Shaking time was 60 min. Our results showed that the studied dolomite samples were mainly composed of calcium and magnesium oxides; other impurities were also detected. Adsorption data showed that dolomitic samples of the Triassic Rehach formation (southern Tunisia) removed substantial amounts of lead and cadmium ions in aqueous systems. It was found that lead removal efficiency reached 24.80 and 33.25 mg/g, which is much higher than that of cadmium (1.31 to 1.77 mg/g). It was also observed that more than 95% of the total adsorptive capacity was achieved after 30 min of agitation, but 60 min was used to ensure equilibration time. These results suggested that the Triassic Rehach dolomite, Tunisia, can be effectively used for capturing lead and cadmium ions in aqueous conditions.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.5
2024-04-30
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/1/AJSR.2024.issue1.5.html?itemId=/content/journals/10.5339/ajsr.2024.5&mimeType=html&fmt=ahah

References

  1. Shaaban M, Peng Q, Lin S, Wu Y, Khalid MS, Wu L, et al. Dolomite application enhances CH4 uptake in an acidic soil. CATENA. 2016;140:9–14.
    [Google Scholar]
  2. Temiz H, Kantarcı F, İnceer ME. Influence of blast-furnace slag on behaviour of dolomite used as a raw material of MgO-type expansive agent. Construction and Building Materials. 2015;94:528–535.
    [Google Scholar]
  3. Ivanets AI, Kitikova NV, Shashkova IL, Oleksiienko OV, Levchuk I, Sillanpaa M. Using of phosphatized dolomite for treatment of real mine water from metal ions. Journal of Water Process Engineering. 2016;9:246–253.
    [Google Scholar]
  4. Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. Chapter one – Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy. 2011;110:1–75.
    [Google Scholar]
  5. Warren J. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews. 2000;52:1–81.
    [Google Scholar]
  6. Choong TSY, Chuah TG, Robiah Y, Koay FLG, Azni I. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination. 2007;217:139–166.
    [Google Scholar]
  7. Anthony EJ, Bulewicz EM, Jia L. Reactivation of limestone sorbents in FBC for SO2 capture. Progress in Energy and Combustion Science. 2007;33:171–210.
    [Google Scholar]
  8. Akcil A, Koldas S. Acid Mine Drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production. 2006;14:1139–1145.
    [Google Scholar]
  9. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41:3210–3244.
    [Google Scholar]
  10. Yang C, Liu L, Zeng T, Yang D, Yao Z, Zhao Y, et al. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore. Analytical Chemistry. 2013;85:7302–7307.
    [Google Scholar]
  11. Boudrahem F, Aissani-Benissad F, Soualah A. Adsorption of lead(II) from aqueous solution by using leaves of date trees as an adsorbent. Journal of Chemical & Engineering Data. 2011;56:1804–1812.
    [Google Scholar]
  12. dos Santos WL, dos Santos CMM, Costa JLO, Andrade HMC, Ferreira SLC. Multivariate optimization and validation studies in on-line pre-concentration system for lead determination in drinking water and saline waste from oil refinery. Microchemical Journal. 2004;77:123–129.
    [Google Scholar]
  13. Khairy M, El-Safty SA, Shenashen MA. Environmental remediation and monitoring of cadmium. TrAC Trends in Analytical Chemistry. 2014;62:56–68.
    [Google Scholar]
  14. Sdiri A, Higashi T, Jamoussi F, Bouaziz S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental Management. 2012;93:245–253.
    [Google Scholar]
  15. Sdiri A, Higashi T. Simultaneous removal of heavy metals from aqueous solution by natural limestones. Applied Water Science. 2013;3:29–39.
    [Google Scholar]
  16. Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science. 2014;211:93–101.
    [Google Scholar]
  17. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid and Interface Science. 2013;193–194:24–34.
    [Google Scholar]
  18. Gupta VK, Nayak A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2 O3 nanoparticles. Chemical Engineering Journal. 2012;180:81–90.
    [Google Scholar]
  19. Mohan D, Gupta VK, Srivastava SK, Chander S. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A. 2001;177:169–181.
    [Google Scholar]
  20. Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzadeh M, Hemmati A. Adsorption of cadmium (II) and nickel (II) on dolomite powder. Desalination and Water Treatment. 2015;53:149–157.
    [Google Scholar]
  21. Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers. 2012;43:125–131.
    [Google Scholar]
  22. Ivanets AI, Kitikova NV, Shashkova IL, Oleksiienko OV, Levchuk I, Sillanpaa M. Removal of Zn2+, Fe2+, Cu2+, Pb2+, Cd2+, Ni2+ and Co2+ ions from aqueous solutions using modified phosphate dolomite. Journal of Environmental Chemical Engineering. 2014;2:981–987.
    [Google Scholar]
  23. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids. 2016;221:1029–1033.
    [Google Scholar]
  24. Khairy M, El-Safty SA. Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles. Colloids and Surfaces B: Biointerfaces. 2013;111:460–468.
    [Google Scholar]
  25. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal. 2011;172:37–46.
    [Google Scholar]
  26. Sdiri A, Higashi T, Chaabouni R, Jamoussi F. Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, & Soil Pollution. 2012;223:1191–1204.
    [Google Scholar]
  27. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environmental Earth Sciences. 2010;61:1275–1287.
    [Google Scholar]
  28. Brindley GW, Brown G. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society; 1980. Monograph 5.
    [Google Scholar]
  29. Moore DM, Reynolds RC. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press; 1989.
    [Google Scholar]
  30. Rouff AA, Elzinga EJ, Reeder RJ, Fisher NS. The Effect of aging and pH on Pb(II) sorption processes at the calcite–water interface. Environ. Sci. Technol. 2006;40:1792–1798.
    [Google Scholar]
  31. Calugaru IL, Neculita CM, Genty T, Bussière B, Potvin R. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials. 2016;310:48–55.
    [Google Scholar]
  32. Sadeghzade S, Emadi R, Ghomi H. Mechanical alloying synthesis of forsterite–diopside nanocomposite powder for using in tissue engineering. Ceramics – Silikáty. 2015;59:1–5.
    [Google Scholar]
  33. Salameh Y, Albadarin AB, Allen S, Walker G, Ahmad MNM. Arsenic(III,V) adsorption onto charred dolomite: Charring optimization and batch studies. Chemical Engineering Journal. 2015;259:663–671.
    [Google Scholar]
  34. Sdiri A, Higashi T, Jamoussi F. Adsorption of copper and zinc onto natural clay in single and binary systems. International Journal of Environmental Science and Technology. 2014;11:1081–1092.
    [Google Scholar]
  35. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Removal of heavy metals from aqueous solution by limestone. International Journal of Global Environmental Issues. 2012;12:171–178.
    [Google Scholar]
  36. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry. 1999;34:451–465.
    [Google Scholar]
  37. Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Research. 2006;40:2645–2658.
    [Google Scholar]
  38. Brady PV, Papenguth HW, Kelly JW. Metal sorption to dolomite surfaces. Applied Geochemistry. 1999;14:569–579.
    [Google Scholar]
  39. Irani M, Amjadi M, Mousavian MA. Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chemical Engineering Journal. 2011;178:317–323.
    [Google Scholar]
  40. Pehlivan E, Ozkan AM, Dinc S, Parlayici S. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials. 2009;167:1044–1049.
    [Google Scholar]
  41. Gruszecka-Kosowska A, Baran P, Wdowin M, Franus W. Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions. Environmental Earth Sciences. 2017;76:521.
    [Google Scholar]
  42. Ghazy SE, Gad AHM. Lead separation by sorption onto powdered marble waste. Arabian Journal of Chemistry. 2014;7:277–286.
    [Google Scholar]
  43. Ghazy SE, Gabr IM, Gad AHM. Cadmium(II) sorption from water samples by powdered marble wastes. Chemical Speciation & Bioavailability. 2008;20:249–260.
    [Google Scholar]
  44. Kushwaha AK, Gupta N, Chattopadhyaya MC. Adsorption behavior of lrtead onto a new class of functionalized silica gel. Arabian Journal of Chemistry. 2017;10:S81–S89.
    [Google Scholar]
  45. Chen G, Shah KJ, Shi L, Chiang PC. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms. Applied Surface Science. 2017;409:296–305.
    [Google Scholar]
  46. Wang H, Liu H, Xie J, Li H, Chen T, Chen P, et al. An insight into the carbonation of calcined clayey dolomite and its performance to remove Cd (II). Applied Clay Science. 2017;150:63–70.
    [Google Scholar]
  47. Antoniadis V, Tsadilas CD. Sorption of cadmium, nickel, and zinc in mono- and multimetal systems. Applied Geochemistry. 2007;22:2375–2380.
    [Google Scholar]
  48. Yavuz O, Ziyadanoğullari B, Aydin I, Bingöl H. Removal of cadmium from aqueous solution by natural and thermally activated dolomite. Fresenius Environmental Bulletin. 2002;11:123–126.
    [Google Scholar]
  49. Rangel-Porras G, GarcÍa-Magno JB, González-Muñoz MP. Lead and cadmium immobilization on calcitic limestone materials. Desalination. 2010;262:1–10.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2024.5
Loading
/content/journals/10.5339/ajsr.2024.5
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error