1887
6 - Al-Bayan University Scientific Conference
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

The majority of dental implants and prostheses rely on the association with the soft tissues that may be vulnerable to future requirements.1 There are two main requirements for osseointegration: first, the bone must be healthy; second, the implant must be stable and able to withstand the functional load.2

Using both the computer12 model and finite element analysis technique to assess the bone space volume in implants with narrow-neck hybrid design compared with butt platform and bevel design at an inter-implant distance of 1 mm, the result showed approximately 56.7 mm3 in the butt joint platform design implant and between two bevel platforms (+2.74% or more), while it showed 78.42 mm3 (+38.32%) between two narrow-neck hybrid designs.

The implant platform switching technique is used to decrease the stress on the crestal bone and allow for better load distribution. This can be done at two levels: one is at the fixture–abutment interface, and the second within the bone at the fixture itself in the body–neck area.3 The narrow-neck hybrid design seems to be superior in lowering the stress on crestal bone and to provide more room for bone healing potential with less negative effect on soft tissue healing.4

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2024.absc.6
2024-10-10
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2024/6/jemtac.2024.absc.6.html?itemId=/content/journals/10.5339/jemtac.2024.absc.6&mimeType=html&fmt=ahah

References

  1. Sanjuan M, Brizuela-Velasco A, Gil J, Cerrolaza M, Montalvillo E, Fernandez-Hernandez S, et al. Hybrid surface implants: Influence of residual stress on mechanical behavior, bevaluated by finite element analysis and validation by fatigue tests. Dent Mater. 2024 Jan; 40(1):9–18. doi: 10.1016/j.dental.2023.10.002.
    [Google Scholar]
  2. Juan-Montesinos A, Agustin-Panadero R, Sola-Ruiz MF, Marco-Pitarch R, Montiel-Company JM, Fons-Badal C. Comparative study by systematic review and meta-analysis of the peri-implant effect of two types of platforms: Platform-switching versus conventional platforms. J Clin Med. 2022 Mar 21; 11(6):1743. doi: 10.3390/jcm11061743.
    [Google Scholar]
  3. Chakraborty A, Sahare KD, Datta P, Majumder S, Roychowdhury A, Basu B. Probing the influence of hybrid thread design on biomechanical response of dental implants: Finite element study and experimental validation. J Biomech Eng. 2023 Jan 1; 145(1):011011. doi: 10.1115/1.4054984.
    [Google Scholar]
  4. I-Chiang C, Shyh-Yuan L, Ming-Chang W, Sun C-W, Jiang C-P. Finite element modeling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Comput Methods Biomech Biomed Eng. 2014 Apr; 17(5):516–26. doi: 10.1080/10255842.2012.697556.
    [Google Scholar]
  5. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent. 2008 Dec; 100(6):422–31. doi: 10.1016/S0022-3913(08)60259-0.
    [Google Scholar]
  6. Box VH, Sukotjo C, Knoernschild KL, Campbell SD, Afshari FS. Patient-reported and clinical outcomes of implant-supported fixed complete dental prostheses: A comparison of metal-acrylic, milled zirconia, and retrievable crown prostheses. J Oral Implantol. 2018; 44(1):51–61. doi: 10.1563/aaid-joi-D-17-00184.
    [Google Scholar]
  7. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998 Summer; 43(2):192–203. doi: 10.1002/(sici)1097-4636(199822)43:2 < 192:aid-jbm14>3.0.co;2-k.
    [Google Scholar]
  8. Yu J, Zhang J, Chen S, Han Q, Yan H. Repair of unilateral combined orbital floor and medial wall fracture using two titanium mesh plates: A modified technique. Ann Transl Med. 2021 Mar; 9(6):463. doi: 10.21037/atm-21-598.
    [Google Scholar]
  9. Albrektsson T. Hard tissue implant interface. Aust Dent J. 2008 Jun: 53 Suppl 1:S34–8. doi: 10.1111/j.1834-7819.2008.00039.x.
    [Google Scholar]
  10. Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2000. 2008:47:15–26. doi: 10.1111/j.1600-0757.2007.00247.x.
    [Google Scholar]
  11. Turkyilmaz I. Dental rehabilitation of an elderly patient using an alternative implant-supported mandibular cemented prosthesis: A case report. Gen Dent. 2009 May–Jun; 57(3):276–9.
    [Google Scholar]
  12. Montemezzi P, Ferrini F, Pantaleo G, Gherlone E, Cappare P. Dental implants with different neck design: A prospective clinical comparative study with 2-year follow-up. Materials (Basel). 2020 Feb 25; 13(5):1029. doi: 10.3390/ma13051029.
    [Google Scholar]
  13. Takaba M, Tanaka S, Ishiura Y, Baba K. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework. J Prosthodont. 2013 Jul; 22(5):402–7. doi: 10.1111/jopr.12001.
    [Google Scholar]
  14. Woods B, Schenberg M, Chandu A. A Comparison of immediate and delayed dental implant placement in head and neck surgery patients. J Oral Maxillofac Surg. 2019 Jun; 77(6):1156–64. doi: 10.1016/j.joms.2019.02.007.
    [Google Scholar]
  15. Gehrke SA, Frugis VL, Shibli JA, Fernandez MPR, Sanchez de Val JEM, Girardo JLC, et al. Influence of implant design (cylindrical and conical) in the load transfer surrounding long (13 mm) and short (7 mm) length implants: A photoelastic analysis. Open Dent J. 2016 Sep 30:10:522–30. doi: 10.2174/1874210601610010522.
    [Google Scholar]
  16. Necchi S, Migliavacca F, Gastaldi D, Pizzagalli M, Del Fabbro M, Weinstein R, et al. The effect of fixture neck design in a realistic model of dental implant: A finite element approach. Comput Methods Biomech Biomed Eng. 2003 Oct–Dec; 6(5–6):289–97. doi: 10.1080/10255840310001646301.
    [Google Scholar]
  17. Vailati F, Belser UC. Replacing four missing maxillary incisors with regular- or narrow-neck implants: analysis of treatment options. Eur J Esthet Dent. 2007 Spring; 2(1):42–57.
    [Google Scholar]
  18. Jemt T, Albrektsson T. Do long-term followed-up Branemark implants commonly show evidence of pathological bone breakdown? A review based on recently published data. Periodontol 2000. 2008:47:133–42. doi: 10.1111/j.1600-0757.2007.00241.x.
    [Google Scholar]
  19. Seok W-H, Yun P-Y, Chang N-H, Kim Y-K. Tilted implants for implant-supported fixed hybrid prostheses: Retrospective review. J Korean Assoc Oral Maxillofac Surg. 2023 Oct 31; 49(5):278–86. doi: 10.5125/jkaoms.2023.49.5.278.
    [Google Scholar]
  20. Carpentieri J, Greenstein G, Cavallaro J. Hierarchy of restorative space required for different types of dental implant prostheses. J Am Dent Assoc. 2019 Aug; 150(8):695–706. doi: 10.1016/j.adaj.2019.04.015.
    [Google Scholar]
  21. Gago-Garcia A, Barrilero-Martin C, Petrakakis P, de Elio-Oliveros J, Del Canto-Pingarron M, Alobera-Gracia MA, et al. Implant-prosthetic rehabilitation with and without platform switching: A retrospective clinical cohort study. J Contemp Dent Pract. 2021 Sep 1; 22(9):1041–1047. doi: 10.5005/jp-journals-10024-3181.
    [Google Scholar]
  22. Bravo E, Serrano B, Ribeiro-Vidal H, Virto L, Sanchez IS, Herrera D, et al. Biofilm formation on dental implants with a hybrid surface microtopography: An in vitro study in a validated multispecies dynamic biofilm model. Clin Oral Implants Res. 2023 May; 34(5):475–85. doi: 10.1111/clr.14054.
    [Google Scholar]
  23. Karyagina AS, Orlova PA, Zhulina AV, Krivozubov MS, Grunina TM, Strukova NV, et al. Hybrid implants based on calcium-magnesium silicate ceramic diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: Ectopic osteogenesis in intramuscular implantation in mice. Biochemistry (Mosc). 2023 Aug; 88(8):1116–1125. doi: 10.1134/S0006297923080060.
    [Google Scholar]
  24. Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 2008 Nov; 87(2):299–307. doi: 10.1002/jbm.a.31744.
    [Google Scholar]
  25. Nevins M, Chu SJ, Jang W, Kim DM. Evaluation of an innovative hybrid macrogeometry dental implant in immediate extraction sockets: A histomorphometric pilot study in foxhound dogs. Int J Periodontics Restorative Dent. 2019 Jan/Feb; 39(1):29–37. doi: 10.11607/prd.3848.
    [Google Scholar]
  26. Shirazi S, Huang C-C, Kang M, Lu Y, Leung KS, Pitol-Palin L, et al. Evaluation of nanoscale versus hybrid micro/nano surface topographies for endosseous implants. Acta Biomater. 2024 Jan 1:173:199–216. doi: 10.1016/j.actbio.2023.10.030.
    [Google Scholar]
  27. Del Fabbro M, Bianchessi C, Del Lupo R, Landi L, Taschieri S, Corbella S. Platform switching vs standard implants in partially edentulous patients using the Dental Tech Implant System: Clinical and radiological results from a prospective multicenter study. Clin Oral Investig. 2015 Dec; 19(9):2233–44. doi: 10.1007/s00784-015-1462-z.
    [Google Scholar]
  28. Beschnidt SM, Cacaci C, Dedeoglu K, Hildebrand D, Hulla H, Iglhaut G, et al. Implant success and survival rates in daily dental practice: 5-year results of a non-interventional study using CAMLOG SCREW-LINE implants with or without platform-switching abutments. Int J Implant Dent. 2018 Nov 2; 4(1):33. doi: 10.1186/s40729-018-0145-3.
    [Google Scholar]
  29. Diehl K, Hanser U, Hort W, Mittelmeier H. [Biomechanic researches of maximum initial tension forces of bone screws on various bone sections (author's transl)]. Arch Orthop Unfallchir. 1974; 80(2):89–94.
    [Google Scholar]
  30. Bilhan H, Erdogan O, Geckili O, Bilgin T. Comparison of marginal bone levels around tissue-level implants with platform-matched and bone-level implants with platform-switching connections: 1-year results of a prospective cohort study with a split-mouth design. Int J Oral Maxillofac Implants. 2021; 36(5):945–51. doi: 10.11607/jomi.8891.
    [Google Scholar]
  31. Diehl K, Harms J, Hanser U, Mittelmeier H. [Experimental research into the stability of bone plate osteosynthesis as a function of the initial stress in animals]. Z Orthop Ihre Grenzgeb. 1979; 117(4)10–2.
    [Google Scholar]
  32. Huang Y-MChou I-CJiang C-PWu Y-SLee S-Y. Finite element analysis of dental implant neck effects on primary stability and osseointegration in a type IV bone mandible. Biomed Mater Eng. 2014; 24(1):1407–15. doi: 10.3233/BME-130945.
    [Google Scholar]
  33. Hanser T, Doliveux R. MicroSaw and piezosurgery in harvesting mandibular bone blocks from the retromolar region: A randomized split-mouth prospective clinical trial. Int J Oral Maxillofac Implants. 2018 Mar/Apr; 33(2):365–72. doi: 10.11607/jomi.4416.
    [Google Scholar]
  34. Moraes de Lima Perini M, Pugh JN, Scott EM, Bhula K, Chirgwin A, Reul ON, et al. Primary cilia in osteoblasts and osteocytes are required for skeletal development and mechanotransduction. bioRxiv.2023 Dec 18:2023.12.15.570609. doi: 10.1101/2023.12.15.570609.
    [Google Scholar]
  35. Oppenheimer AJ, Tong L, Buchman SR. Craniofacial bone grafting: Wolff's law revisited. Craniomaxillofac Trauma Reconstr. 2008 Nov; 1(1):49–61. doi: 10.1055/s-0028-1098963.
    [Google Scholar]
  36. Ding R, Zhang N, Wang Q, Wang W. Alterations of the subchondral bone in osteoarthritis: Complying with Wolff's law. Curr Rheumatol Rev. 2022; 18(3):178–85. doi: 10.2174/1573397118666220401104428.
    [Google Scholar]
  37. Habal MB. The facial skeleton is a living organ and not wood for carpentry: Bone healing as a functional adaptation to mechanical loading: Going beyond Wolff's law. J Craniofac Surg. 2010 Jan; 21(1):1–2. doi: 10.1097/SCS.0b013e3181c108b3.
    [Google Scholar]
  38. Shimada E, Pilliar RM, Deporter DA, Schroering R, Atenafu E. A pilot study to assess the performance of a partially threaded sintered porous-surfaced dental implant in the dog mandible. Int J Oral Maxillofac Implants. 2007 Nov–Dec; 22(6):948–54.
    [Google Scholar]
  39. Charters RT. Restoration of a modified solid abutment of the ITI dental implant system: One of the most unique systems in implant dentistry. J Dent Technol. 2001; 18(1):10–2.
    [Google Scholar]
/content/journals/10.5339/jemtac.2024.absc.6
Loading
/content/journals/10.5339/jemtac.2024.absc.6
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error