1887
Volume 2024, Issue 3
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

Background: Various prevalences of asthma in coronavirus disease 2019 (COVID-19) have been reported in different regions, and the association between asthma and COVID-19 subsequent mortality has been in debate. Thus, this study aimed to investigate whether there was a significant association between asthma and COVID-19 mortality in Spain through a meta-analysis.

Methods: The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were strictly complied with conducting this study. The pooled odds ratio (OR) with a corresponding 95% confidence interval (CI) was calculated by a random-effects model. The 2 statistics for heterogeneity, sensitivity analysis for robustness, Begg’s test, and Egger’s test for publication bias, along with subgroup analyses for confounding bias, were also performed to support the foundation of this study.

Results: The meta-analysis revealed that asthma was significantly associated with a lower risk of mortality among COVID-19 patients in Spain with a random-effects model (pooled OR = 0.78, 95% CI = 0.69–0.88, 2 = 35%). Further subgroup analyses by male proportion and sample size also indicated that a statistically significant negative correlation did exist between asthma and COVID-19 mortality. Robustness and no publication on-bias were evidenced by sensitivity analysis, Egger’s test, and Begg’s test, respectively.

Conclusion: In conclusion, patients with asthma were found to have a lower risk of mortality from COVID-19 in Spain, especially among elderly patients. In addition, asthmatic patients infected with COVID-19 may be at risk of death compared to non-asthmatic patients, which is not a cause for undue concern, thereby reducing the burden of medication.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2024.34
2024-08-06
2024-09-05
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2024/3/qmj.2024.34.html?itemId=/content/journals/10.5339/qmj.2024.34&mimeType=html&fmt=ahah

References

  1. World Health Organization. COVID-19 dashboard. https://covid19.who.int/. Accessed: September 10, 2023.
    [Google Scholar]
  2. Pal S, Gangu K, Garg I, Shuja H, Bobba A, Chourasia P, et al.. Gender and race-based health disparities in COVID-19 outcomes among hospitalized patients in the United States: A retrospective analysis of a national sample. Vaccines. 2022; 10:(12):2036. https://doi.org/10.3390/vaccines10122036
    [Google Scholar]
  3. Wang Y, Hao Y, Hu M, Wang Y, Yang H. Interstitial lung disease independently associated with higher risk for COVID-19 severity and mortality: A meta-analysis of adjusted effect estimates. Int Immunopharmacol. 2022; 111:109088https://doi.org/10.1016/j.intimp.2022.109088
    [Google Scholar]
  4. Al Kaabi N, Yang Y, Eldin Hussein S, Yang T, Abdalla J, Wang H, et al.. Efficacy and safety of a booster vaccination with two inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: Results of a double-blind, randomized, placebo-controlled, phase 3 trial in Abu Dhabi. Vaccines. 2023; 11:(2):299. https://doi.org/10.3390/vaccines11020299
    [Google Scholar]
  5. Calzetta L, Chetta A, Aiello M, Frizzelli A, Ora J, Melis E, et al.. The BNT162b2 mRNA COVID-19 vaccine increases the contractile sensitivity to histamine and parasympathetic activation in a human ex vivo model of severe eosinophilic asthma. Vaccines. 2023; 11:(2):282. https://doi.org/10.3390/vaccines11020282
    [Google Scholar]
  6. Shkalim Zemer V, Grossman Z, Cohen HA, Hoshen M, Gerstein M, Yosef N, et al.. Acceptance rates of COVID-19 vaccine highlight the need for targeted public health interventions. Vaccines. 2022; 10:(8). https://doi.org/10.3390/vaccines10081167
    [Google Scholar]
  7. Munoz X, Pilia F, Ojanguren I, Romero-Mesones C, Cruz MJ. Is asthma a risk factor for COVID-19? Are phenotypes important? ERJ Open Res. 2021; 7:(1):00216-2020. https://doi.org/10.1183/23120541.00216-2020
    [Google Scholar]
  8. Meghji J, Mortimer K, Agusti A, Allwood BW, Asher I, Bateman ED, et al.. Improving lung health in low-income and middle-income countries: From challenges to solutions. Lancet. 2021; 397:(10277):928–40. https://doi.org/10.1016/S0140-6736(21)00458-X
    [Google Scholar]
  9. Quirce S, Plaza V, Picado C, Vennera M, Casafont J. Prevalence of uncontrolled severe persistent asthma in pneumology and allergy hospital units in Spain. J Investig Allergol Clin Immunol. 2011; 21:(6):466–71.
    [Google Scholar]
  10. Vrotsou K, Rotaeche R, Mateo-Abad M, Machón M, Vergara I. Variables associated with COVID-19 severity: An observational study of non-paediatric confirmed cases from the general population of the Basque Country, Spain. BMJ Open. 2021; 11:(4):e049066. https://doi.org/10.1136/bmjopen-2021-049066
    [Google Scholar]
  11. Alvarez-Arroyo L, Carrera-Hueso FJ, El-Qutob D, Robustillo-Villarino M, Girona-Sanz AM, Pin-Godos MT, et al.. Descriptive study of a cohort of COVID-19 hospitalized patients in Spain. Gac Med Mex. 2021; 157:(1):76–83. https://doi.org/10.24875/GMM.M21000525
    [Google Scholar]
  12. Gude-Sampedro F, Fernández-Merino C, Ferreiro L, Lado-Baleato ó, Espasandín-Domínguez J, Hervada X, et al.. Development and validation of a prognostic model based on comorbidities to predict COVID-19 severity: A population-based study. Int J Epidemiol. 2021; 50:(1):64–74. https://doi.org/10.1093/ije/dyaa209
    [Google Scholar]
  13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al.. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009; 6:(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100
    [Google Scholar]
  14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Clin Res Ed). 2009; 339:b2535. https://doi.org/10.1136/bmj.b2535
    [Google Scholar]
  15. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed). 2003; 327:(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557
    [Google Scholar]
  16. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50:(4):1088–101.
    [Google Scholar]
  17. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res Ed). 1997; 315:(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629
    [Google Scholar]
  18. Arber N, Shah PL, Assoumou L, Rokx C, De Castro N, Bakhai A, et al.. Clinical outcomes by supplemental oxygen use in remdesivir-treated, hospitalised adults with COVID-19. Infect Dis Now. 2023; 53:(7):104760. https://doi.org/10.1016/j.idnow.2023.104760
    [Google Scholar]
  19. Belarte-Tornero LC, Valdivielso-Moré S, Vicente Elcano M, Solé-González E, Ruíz-Bustillo S, Calvo-Fernández A, et al.. Prognostic implications of chronic heart failure and utility of NT-proBNP levels in heart failure patients with SARS-CoV-2 infection. J Clin Med. 2021; 10:(2):323. https://doi.org/10.3390/jcm10020323
    [Google Scholar]
  20. Berenguer J, Ryan P, Rodríguez-Baño J, Jarrín I, Carratalà J, Pachón J, et al.. Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. Clin Microbiol Infect. 2020; 26:(11):1525–36. https://doi.org/10.1016/j.cmi.2020.07.024
    [Google Scholar]
  21. Calderón-Parra J, Cuervas-Mons V, Moreno-Torres V, Rubio-Rivas M, Blas PA, Pinilla-Llorente B, et al.. Influence of chronic use of corticosteroids and calcineurin inhibitors on COVID-19 clinical outcomes: Analysis of a nationwide registry. Int J Infect Dis. 2022; 116:51–8. https://doi.org/10.1016/j.ijid.2021.12.327
    [Google Scholar]
  22. Casas-Rojo JM, Ventura PS, Anton Santos JM, de Latierro AO, Arevalo-Lorido JC, Mauri M, et al.. Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry. Int Emerg Med. 2023:1711–22. https://doi.org/10.1007/s11739-023-03338-0
    [Google Scholar]
  23. Castilla J, Guevara M, Miqueleiz A, Baigorria F, Ibero-Esparza C, Navascués A, et al.. Risk factors of infection, hospitalization and death from SARS-CoV-2: A population-based cohort study. J Clin Med. 2021; 10:(12):2608. https://doi.org/10.3390/jcm10122608
    [Google Scholar]
  24. Chamorro-de-Vega E, Rodriguez-Gonzalez CG, Manrique-Rodríguez S, Lobato-Matilla E, García-Moreno F, Olmedo M, et al.. Clinical course of severe patients with COVID-19 treated with tocilizumab: Report from a cohort study in Spain. Exp Rev Clin Pharmacol. 2021; 14:(2):249–60. https://doi.org/10.1080/17512433.2021.1875819
    [Google Scholar]
  25. Cisterna-García A, Guillén-Teruel A, Caracena M, Pérez E, Jiménez F, Francisco-Verdú FJ, et al.. A predictive model for hospitalization and survival to COVID-19 in a retrospective population-based study. Sci Rep. 2022; 12:(1):18126. https://doi.org/10.1038/s41598-022-22547-9
    [Google Scholar]
  26. de Arriba Fernandez A, Bilbao JLA, Frances AE, Mora AC, Perez AG, Barreiros MAD. Epidemiological study of vaccination against SARS-CoV-2 and its impact on COVID-19 progression in a cohort of patients in gran Canaria. Vacunas. 2023; 24:(4):308–16. https://doi.org/10.1016/j.vacun.2023.06.005
    [Google Scholar]
  27. Diaz MA, Catalan-Caceres N, Beauperthuy TC, Domingo C, Ibañez E, Morata C, et al.. Clinical features and outcomes associated with bronchial asthma among COVID-19 hospitalized patients. J Asthma Allergy. 2022; 15:775–81. https://doi.org/10.2147/JAA.S354082
    [Google Scholar]
  28. Fernández-Cruz A, Puyuelo A, Núñez Martín-Buitrago L, Sánchez-Chica E, Díaz-Pedroche C, Ayala R, et al.. Higher mortality of hospitalized haematologic patients with COVID-19 compared to non-haematologic is driven by thrombotic complications and development of ARDS: An age-matched cohorts study. Clin Infect Pract. 2022; 13:100137. https://doi.org/10.1016/j.clinpr.2022.100137
    [Google Scholar]
  29. Fernández-Martínez NF, Ortiz-González-Serna R, Serrano-Ortiz á, Rivera-Izquierdo M, Ruiz-Montero R, Pérez-Contreras M, et al.. Sex differences and predictors of in-hospital mortality among patients with COVID-19: Results from the ANCOHVID multicentre study. Int J Environ Res Public Health. 2021; 18:(17):9018. https://doi.org/10.3390/ijerph18179018
    [Google Scholar]
  30. Galindo-Andugar MA, Arias Arias A, Alfonso Garcia Guerra J, Fernandez Visier I, Manuel Fernandez Ibanez J, Bellido Maldonado A. Impact of N-acetylcysteine in the mortality of patients hospitalized with COVID-19: A retrospective cohort study. Rev Clín Esp. 2023; 223:(8):479–85. https://doi.org/10.1016/j.rceng.2023.07.006
    [Google Scholar]
  31. García de Guadiana-Romualdo L, Martínez Martínez M, Rodríguez Mulero MD, Esteban-Torrella P, Hernández Olivo M, Alcaraz García MJ, et al.. Circulating MR-proADM levels, as an indicator of endothelial dysfunction, for early risk stratification of mid-term mortality in COVID-19 patients. Int J Infect Dis. 2021; 111:211–8. https://doi.org/10.1016/j.ijid.2021.08.058
    [Google Scholar]
  32. Jiménez E, Fontán-Vela M, Valencia J, Fernandez-Jimenez I, álvaro-Alonso EA, Izquierdo-García E, et al.. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: A retrospective case series study. BMJ Open. 2020; 10:(11):e042398. https://doi.org/10.1136/bmjopen-2020-042398
    [Google Scholar]
  33. Laosa O, Pedraza L, álvarez-Bustos A, Carnicero JA, Rodriguez-Artalejo F, Rodriguez-Mañas L. Rapid assessment at hospital admission of mortality risk from COVID-19: The role of functional status. J Am Med Dir Assoc. 2020; 21:(12):1798–802.e2. https://doi.org/10.1016/j.jamda.2020.10.002
    [Google Scholar]
  34. Lemus Calderon JA, Beneyto Martin P, Guzmán Rodriguez R, Caligaris Cataldi HS, Senent Sánchez CJ. Differentiating characteristics of patients with asthma in the severe acute respiratory syndrome coronavirus 2 infection. Ann Allergy Asthma Immunol. 2021; 126:(1):92–3. https://doi.org/10.1016/j.anai.2020.09.004
    [Google Scholar]
  35. Loucera C, Peña-Chilet M, Esteban-Medina M, Muñoyerro-Muñiz D, Villegas R, Lopez-Miranda J, et al.. Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Sci Rep. 2021; 11:(1):23380. https://doi.org/10.1038/s41598-021-02701-5
    [Google Scholar]
  36. Macias-Munoz L, Wijngaard R, Gonzalez-de la Presa B, Bedini JL, Morales-Ruiz M, Jimenez W. Value of clinical laboratory test for early prediction of mortality in patients with COVID-19: The BGM score. J Circ Biomark. 2021; 10:1–8. https://doi.org/10.33393/jcb.2021.2194
    [Google Scholar]
  37. Maestre-Muñiz MM, Arias á, Arias-González L, Angulo-Lara B, Lucendo AJ. Prognostic factors at admission for in-hospital mortality from COVID-19 infection in an older rural population in central Spain. J Clin Med. 2021; 10:(2):318. https://doi.org/10.3390/jcm10020318
    [Google Scholar]
  38. Martin-Vicente M, Almansa R, Martínez I, Tedim AP, Bustamante E, Tamayo L, et al.. Low anti-SARS-CoV-2 S antibody levels predict increased mortality and dissemination of viral components in the blood of critical COVID-19 patients. J Intern Med. 2022; 291:(2):232–40. https://doi.org/10.1111/joim.13386
    [Google Scholar]
  39. Martínez-Del Río J, Piqueras-Flores J, Nieto-Sandoval Martín de la Sierra P, Negreira-Caamaño M, águila-Gordo D, Mateo-Gómez C, et al.. Comparative analysis between the use of renin-angiotensin system antagonists and clinical outcomes of hospitalized patients with COVID-19 respiratory infection. Med Clin (Engl Ed). 2020; 155:(11):473–81. https://doi.org/10.1016/j.medcle.2020.07.013
    [Google Scholar]
  40. Martos Pérez F, Luque Del Pino J, Jiménez García N, Mora Ruiz E, Asencio Méndez C, García Jiménez JM, et al.. Comorbidity and prognostic factors on admission in a COVID-19 cohort of a general hospital. Rev Clín Esp. 2021; 221:(9):529–35. https://doi.org/10.1016/j.rceng.2020.05.010
    [Google Scholar]
  41. Mateos-Arroyo JA, Zaragoza-Garcia I, Sanchez-Gomez R, Posada-Moreno P, Ortuno-Soriano I. Validation of the Barthel index as a predictor of in-hospital mortality among COVID-19 patients. Healthcare (Basel). 2023; 11:(9):1338. https://doi.org/10.3390/healthcare11091338
    [Google Scholar]
  42. Molinero M, Benítez ID, González J, Gort-Paniello C, Moncusí-Moix A, Rodríguez-Jara F, et al.. Bronchial aspirate-based profiling identifies microRNA signatures associated with COVID-19 and fatal disease in critically ill patients. Front Med. 2021; 8:756517. https://doi.org/10.3389/fmed.2021.756517
    [Google Scholar]
  43. Oristrell J, Oliva JC, Subirana I, Casado E, Domínguez D, Toloba A, et al.. Association of calcitriol supplementation with reduced COVID-19 mortality in patients with chronic kidney disease: A population-based study. Biomedicines. 2021; 9:(5):509. https://doi.org/10.3390/biomedicines9050509
    [Google Scholar]
  44. Pavel AB, Glickman JW, Michels JR, Kim-Schulze S, Miller RL, Guttman-Yassky E. Th2/Th1 cytokine imbalance is associated with higher COVID-19 risk mortality. Front Genet. 2021; 12:706902. https://doi.org/10.3389/fgene.2021.706902
    [Google Scholar]
  45. Pérez-García F, Bailén R, Torres-Macho J, Fernández-Rodríguez A, Jiménez-Sousa M, Jiménez E, et al.. Age-adjusted endothelial activation and stress index for coronavirus disease 2019 at admission is a reliable predictor for 28-day mortality in hospitalized patients with coronavirus disease 2019. Front Med. 2021; 8:736028. https://doi.org/10.3389/fmed.2021.736028
    [Google Scholar]
  46. Rodríguez-Molinero A, Gálvez-Barrón C, Miñarro A, Macho O, López GF, Robles MT, et al.. Association between COVID-19 prognosis and disease presentation, comorbidities and chronic treatment of hospitalized patients. PLoS One. 2020; 15:(10):e0239571. https://doi.org/10.1371/journal.pone.0239571
    [Google Scholar]
  47. Rubio-Rivas M, Ronda M, Padulles A, Mitjavila F, Riera-Mestre A, García-Forero C, et al.. Beneficial effect of corticosteroids in preventing mortality in patients receiving tocilizumab to treat severe COVID-19 illness. Int J Infect Dis. 2020; 101:290–7. https://doi.org/10.1016/j.ijid.2020.09.1486
    [Google Scholar]
  48. Salgado-Barreira A, Seijas-Amigo J, Rodriguez-Manero M, Pineiro-Lamas M, Eiras S, Cordero A, et al.. Effect of dapagliflozin on COVID-19 infection and risk of hospitalization. J Antimicrob Chemother. 2023; 78:(9):2335–42. https://doi.org/10.1093/jac/dkad241
    [Google Scholar]
  49. Sarria-Landete AJ, Crespo-Matas JA, Dominguez-Quesada I, Castellanos-Monedero JJ, Marte-Acosta D, Arias-Arias AJ. Predicting the response to methylprednisolone pulses in patients with SARS-COV-2 infection. Med Clin (Engl Ed). 2022; 159:(12):557–62. https://doi.org/10.1016/j.medcle.2022.02.028
    [Google Scholar]
  50. Torres-Macho J, Ryan P, Valencia J, Perez-Butragueno M, Jimenez E, Fontan-Vela M, et al.. The PANDEMYC score. An easily applicable and interpretable model for predicting ortality associated with COVID-19. J Clinical Med. 2020; 9:(10):3066. https://doi.org/10.3390/jcm9103066
    [Google Scholar]
  51. Valverde-Monge M, Canas JA, Barroso B, Betancor D, Ortega-Martin L, Gomez-Lopez A, et al.. Eosinophils and chronic respiratory diseases in hospitalized COVID-19 patients. Front Immunol. 2021; 12:668074. https://doi.org/10.3389/fimmu.2021.668074
    [Google Scholar]
  52. Visos-Varela I, Zapata-Cachafeiro M, Pintos-Rodriguez S, Bugarin-Gonzalez R, Gonzalez-Barcala FJ, Herdeiro MT, et al.. Outpatient atorvastatin use and severe COVID-19 outcomes: A population-based study. J Med Virol. 2023; 95:(7):e28971. https://doi.org/10.1002/jmv.28971
    [Google Scholar]
  53. Bajči MP, Lendak DF, Ristić M, Drljača MM, Brkić S, Turkulov V, et al.. COVID-19 breakthrough infections among patients aged ≥65 years in Serbia: Morbidity and mortality overview. Vaccines. 2022; 10:(11):1818. https://doi.org/10.3390/vaccines10111818
    [Google Scholar]
  54. Carvalho VP, Pontes JPJ, Neto DRB, Borges CER, Campos GRL, Ribeiro HLS, et al.. Mortality and associated factors in patients with COVID-19: Cross-sectional study. Vaccines. 2022; 11:(1):71. https://doi.org/10.3390/vaccines11010071
    [Google Scholar]
  55. Han X, Hou H, Xu J, Ren J, Li S, Wang Y, et al.. Significant association between HIV infection and increased risk of COVID-19 mortality: A meta-analysis based on adjusted effect estimates. Clin Exp Med. 2022; 23:(3):689–700. https://doi.org/10.1007/s10238-022-00840-1
    [Google Scholar]
  56. Alhandod TA, Rabbani SI, Almuqbil M, Alshehri S, Hussain SA, Alomar NF, et al.. A systematic review on the safety and efficacy of COVID-19 vaccines approved in Saudi Arabia. Vaccines (Basel). 2023; 11:(2). https://doi.org/10.3390/vaccines11020281
    [Google Scholar]
  57. Arbel R, Pliskin J. Vaccinations versus lockdowns to prevent COVID-19 mortality. Vaccines (Basel). 2022; 10:(8). https://doi.org/10.3390/vaccines10081347
    [Google Scholar]
  58. Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, et al.. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015; 112:(29):E3883–92. https://doi.org/10.1073/pnas.1501662112
    [Google Scholar]
  59. Li L, Robinson LB, Patel R, Landman AB, Fu X, Shenoy ES, et al.. Association of self-reported high-risk allergy history with allergy symptoms after COVID-19 vaccination. JAMA Netw Open. 2021; 4:(10):e2131034. https://doi.org/10.1001/jamanetworkopen.2021.31034
    [Google Scholar]
  60. Jaggers J, Wolfson AR. mRNA COVID-19 vaccine anaphylaxis: Epidemiology, risk factors, and evaluation. Curr Allergy Asthma Rep. 2023; 23:(3):195–200. https://doi.org/10.1007/s11882-023-01065-2
    [Google Scholar]
  61. Shavit R, Maoz-Segal R, Iancovici-Kidon M, Offengenden I, Haj Yahia S, Machnes Maayan D, et al.. Prevalence of allergic reactions after Pfizer-BioNTech COVID-19 vaccination among adults with high allergy risk. JAMA Network Open. 2021; 4:(8):e2122255. https://doi.org/10.1001/jamanetworkopen.2021.22255
    [Google Scholar]
  62. Caminati M, Guarnieri G, Batani V, Scarpieri E, Finocchiaro A, Chieco-Bianchi F, et al.. COVID-19 vaccination in patients with severe asthma on biologic treatment: Safety, tolerability, and impact on disease control. Vaccines. 2021; 9:(8):853. https://doi.org/10.3390/vaccines9080853
    [Google Scholar]
  63. Kwok WC, Leung SHI, Tam TCC, Ho JCM, Lam DC, Ip MSM, et al.. Efficacy of mRNA and inactivated whole virus vaccines against COVID-19 in patients with chronic respiratory diseases. Int J Chronic Obstruct Pulmonary Dis. 2023; 18:47–56. https://doi.org/10.2147/COPD.S394101
    [Google Scholar]
  64. Ödling M, Andersson N, EkstrÖm S, Roxhed N, Schwenk JM, BjÖrkander S, et al.. COVID-19 vaccine uptake among young adults: Influence of asthma and sociodemographic factors. J Allergy Clin Immunol Glob. 2024; 3:(2):100231. https://doi.org/10.1016/j.jacig.2024.100231
    [Google Scholar]
  65. Bossios A, Bacon AM, Eger K, Paróczai D, Schleich F, Hanon S, et al.. COVID-19 vaccination acceptance, safety and side-effects in European patients with severe asthma. ERJ Open Res. 2023; 9:(6):00590-2023. https://doi.org/10.1183/23120541.00590-2023
    [Google Scholar]
  66. Runnstrom MC, Morrison-Porter A, Ravindran M, Quehl H, Ramonell RP, Woodruff M, et al.. Reduced COVID-19 vaccine response in patients treated with biologic therapies for asthma. Am J Respir Crit Care Med. 2022; 205:(10):1243–5. https://doi.org/10.1164/rccm.202111-2496LE
    [Google Scholar]
  67. Ministerio de Sanidad. Vacuna Covid-19. https://www.sanidad.gob.es/areas/alertasEmergenciasSanitarias/alertasActuales/nCov/vacunaCovid19.htm. Accessed: March 29, 2024.
    [Google Scholar]
  68. Jackson DJ, Trujillo-Torralbo MB, del-Rosario J, Bartlett NW, Edwards MR, Mallia P, et al.. The influence of asthma control on the severity of virus-induced asthma exacerbations. J Allergy Clin Immunol. 2015; 136:(2):497–500.e3. https://doi.org/10.1016/j.jaci.2015.01.028
    [Google Scholar]
  69. Robbins E, Daoud S, Demissie S, James P. The impact of asthma on COVID-19 disease severity in children and adolescents. J Asthma. 2023; 60:(6):1097–103. https://doi.org/10.1080/02770903.2022.2132956
    [Google Scholar]
  70. Lohia P, Sreeram K, Nguyen P, Choudhary A, Khicher S, Yarandi H, et al.. Preexisting respiratory diseases and clinical outcomes in COVID-19: A multihospital cohort study on predominantly African American population. Respir Res. 2021; 22:(1):37. https://doi.org/10.1186/s12931-021-01647-6
    [Google Scholar]
  71. Gutierrez JP, Bertozzi SM. Non-communicable diseases and inequalities increase risk of death among COVID-19 patients in Mexico. PLoS One. 2020; 15:(10):e0240394. https://doi.org/10.1371/journal.pone.0240394
    [Google Scholar]
  72. Shafiee M, Aleyasin SA, Mowla SJ, Vasei M, Yazdanparast SA. The effect of microRNA-375 overexpression, an inhibitor of Helicobacter pylori-induced carcinogenesis, on lncRNA SOX2OT. Jundishapur J Microbiol. 2016; 9:(9):e23464. https://doi.org/10.5812/jjm.23464
    [Google Scholar]
  73. Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. EClinicalMedicine. 2023; 59:101936. https://doi.org/10.1016/j.eclinm.2023.101936
    [Google Scholar]
  74. Carr TF, Zeki AA, Kraft M. Eosinophilic and noneosinophilic asthma. Am J Respir Crit Care Med. 2018; 197:(1):22–37. https://doi.org/10.1164/rccm.201611-2232PP
    [Google Scholar]
  75. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol. 2019; 144:(1):1–12. https://doi.org/10.1016/j.jaci.2019.05.031
    [Google Scholar]
  76. Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJ, Bel EH, et al.. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015; 70:(2):115–20. https://doi.org/10.1136/thoraxjnl-2014-205634
    [Google Scholar]
  77. Rosenberg HF, Domachowske JB, et al.. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol. 2001; 70:(5):691–8.
    [Google Scholar]
  78. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al.. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005; 79:(23):14614–21. https://doi.org/10.1128/JVI.79.23.14614-14621.2005
    [Google Scholar]
  79. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS, et al.. Smoking upregulates angiotensin-converting enzyme-2 receptor: A potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J Clin Med. 2020; 9:(3). https://doi.org/10.3390/jcm9030841
    [Google Scholar]
  80. Jackson DJ, Busse WW, Bacharier LB, Kattan M, O’Connor GT, Wood RA, et al.. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020; 146:(1):203–6.e3. https://doi.org/10.1016/j.jaci.2020.04.009
    [Google Scholar]
  81. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181:(2):271–80 e8. https://doi.org/10.1016/j.cell.2020.02.052
    [Google Scholar]
  82. Asarnow D, Wang B, Lee WH, Hu Y, Huang CW, Faust B, et al.. Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell. 2021; 184:(12):3192–204.e16. https://doi.org/10.1016/j.cell.2021.04.033
    [Google Scholar]
  83. Malkova A, Kudlay D, Kudryavtsev I, Starshinova A, Yablonskiy P, Shoenfeld Y. Immunogenetic predictors of severe COVID-19. Vaccines. 2021; 9:(3):211. https://doi.org/10.3390/vaccines9030211
    [Google Scholar]
  84. Khandia R, Pandey MK, Khan AA, Rzhepakovsky IV, Gurjar P, Karobari MI. Codon usage and context analysis of genes modulated during SARS-CoV-2 infection and dental inflammation. Vaccines. 2022; 10:(11):1874. https://doi.org/10.3390/vaccines10111874
    [Google Scholar]
  85. Sodhi PV, Sidime F, Tarazona DD, Valdivia F, Levano KS. A closer look at ACE2 signaling pathway and processing during COVID-19 infection: Identifying possible targets. Vaccines. 2022; 11:(1):13. https://doi.org/10.3390/vaccines11010013
    [Google Scholar]
  86. Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT, et al.. COVID-19-related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020; 202:(1):83–90. https://doi.org/10.1164/rccm.202003-0821OC
    [Google Scholar]
  87. Chen Y, Li Y, Wang X, Zou P. Montelukast, an anti-asthmatic drug, inhibits Zika virus infection by disrupting viral integrity. Front Microbiol. 2019; 10:3079. https://doi.org/10.3389/fmicb.2019.03079
    [Google Scholar]
  88. Matsuyama S, Kawase M, Nao N, Shirato K, Ujike M, Kamitani W, et al.. The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting the viral replication-transcription complex in cultured cells. J Virol. 2020; 95:(1).
    [Google Scholar]
  89. Terry PD, Heidel RE, Dhand R. Asthma in adult patients with COVID-19. Prevalence and risk of severe disease. Am J Respir Crit Care Med. 2021; 203:893–905. https://doi.org/10.1164/rccm.202008-3266OC
    [Google Scholar]
  90. Sunjaya AP, Allida SM, Di Tanna GL, Jenkins CR. Asthma and coronavirus disease 2019 risk: A systematic review and meta-analysis. Eur Respir J. 2021; in press. https://doi.org/10.1183/13993003.01209-2021
    [Google Scholar]
  91. Hussein MH, Elshazli RM, Attia AS, Nguyen TP, Aboueisha M, Munshi R, et al.. Asthma and COVID-19; different entities, same outcome: A meta-analysis of 107,983 patients. J Asthma. 2022; 59:(5):851–8. https://doi.org/10.1080/02770903.2021.1881970
    [Google Scholar]
  92. Liu S, Cao Y, Du T, Zhi Y. Prevalence of comorbid asthma and related outcomes in COVID-19: A systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2021; 9:693–701. https://doi.org/10.1016/j.jaip.2020.11.054
    [Google Scholar]
  93. Shi L, Xu J, Xiao W, Wang Y, Jin Y, Chen S, et al.. Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2021; 126:524–34.
    [Google Scholar]
  94. Sitek AN, Ade JM, Chiarella SE, Divekar RD, Pitlick MM, Iyer VN, et al.. Outcomes among patients with COVID-19 and asthma: A systematic review and meta-analysis. Allergy Asthma Proc. 2021; 42:267–73. https://doi.org/10.2500/aap.2021.42.210041
    [Google Scholar]
  95. Soeroto AY, Purwiga A, Emmy HPEHP, Roesli RMA. Asthma does not increase COVID-19 mortality and poor outcomes: A systematic review and meta-analysis. Asian Pac J Allergy Immunol. 2021. https://doi.org/10.12932/AP-110920-0955
    [Google Scholar]
  96. Wang Y, Ao G, Qi X, Xie B. The association between COVID-19 and asthma: A systematic review and meta-analysis. Clin Exp Allergy J Brit Soc Allergy Clin Immunol. 2020; 50:1274–7. https://doi.org/10.1111/cea.13733
    [Google Scholar]
  97. Hou H, Xu J, Li Y, Wang Y, Yang H. The association of asthma with COVID-19 mortality: An updated meta-analysis based on adjusted effect estimates. J Allergy Clin Immunol Pract. 2021; 9:3944–68 e5. https://doi.org/10.1016/j.jaip.2021.08.016
    [Google Scholar]
  98. Pardhan S, Wood S, Vaughan M, Trott M. The risk of COVID-19 related hospitalisation, intensive care unit admission and mortality in people with underlying asthma or COPD: A systematic review and meta-analysis. Front Med. 2021; 8:668808. https://doi.org/10.3389/fmed.2021.668808
    [Google Scholar]
  99. Wu X, Xu Y, Jin L, Wang X, Zhu H, Xie Y. Association of preexisting asthma and other allergic diseases With mortality in COVID-19 patients: A systematic review and meta-analysis. Front Med. 2021; 8:670744https://doi.org/10.3389/fmed.2021.670744
    [Google Scholar]
  100. Wang Y, Chen J, Chen W, Liu L, Dong M, Ji J, et al.. Does asthma increase the mortality of patients with COVID-19? A systematic review and meta-analysis. Int Arch Allergy Immunol. 2021; 182:76–82. https://doi.org/10.1159/000510953
    [Google Scholar]
  101. Reyes FM, Hache-Marliere M, Karamanis D, Berto CG, Estrada R, Langston M, et al.. Assessment of the association of COPD and asthma with in-hospital mortality in patients with COVID-19. A systematic review, meta-analysis, and meta-regression analysis. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10102087
    [Google Scholar]
/content/journals/10.5339/qmj.2024.34
Loading
/content/journals/10.5339/qmj.2024.34
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error