1887
Volume 2025, Issue 1
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

This systematic review and meta-analysis examines the impact of intensive versus standard blood pressure control following post-endovascular therapy in ischemic stroke patients.

We conducted a systematic review and meta-analysis in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by searching PubMed, Google Scholar, and Cochrane Central databases from inception to December 2023. The outcomes evaluated included symptomatic intracerebral hemorrhage, functional independence (modified Rankin Scale (mRS) score 0–2), death or disability (mRS score 3–6), and health-related quality of life (three-level EuroQoL five-dimensional self-report questionnaire (EQ-5D-3L score). We used the standard mean difference (SMD) with a 95% confidence interval (CI) for continuous outcomes in all studies and used a random-effects model for data synthesis irrespective of heterogeneity. Heterogeneity was assessed using the I2 statistics.

We screened 2,000 articles and included four randomized controlled trials (3,635 patients). Intensive blood pressure control affected the health-related quality of life (EQ-5D-3L score) more than standard blood pressure (SMD = -0.22, 95% CI: -0.34 to -0.11,  = 0.0002). However, intensive blood pressure control after endovascular therapy did not significantly reduce the risk of intracerebral hemorrhage within 36 hours (risk ratio (RR) = 0.91, 95% CI: 0.70–1.19,  = 0.51). Additionally, there was an insignificant improvement in the likelihood of regaining functional independence (mRS score 0–2) at three months (RR = 0.87, 95% CI: 0.73–1.04,  = 0.12). Moreover, there was an insignificant increase in the risk of death or disability (mRS score 3–6) at 3 months with intensive blood pressure control compared to standard blood pressure control (RR = 1.18, 95% CI: 0.93–1.51,  = 0.18).

In summary, our findings indicate that implementing intensive blood pressure control does not lead to an increased risk of adverse outcomes such as intracranial hemorrhage within 36 hours, compromised functional independence, disability, or mortality 3 months following endovascular therapy. Despite the observed reduction in health-related quality of life reflected in the EQ-5D-3L score, the overall safety profile of intensive blood pressure control compared to standard management suggests its viability as a potential strategy for improving patient outcomes in the context of endovascular therapy.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2025.21
2025-03-17
2025-04-06
The full text of this item is not currently available.

References

  1. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013Jul; 44:(7):2064–2089. doi: 10.1161/STR.0b013e318296aeca.
    [Google Scholar]
  2. Murphy SJ, Werring DJ. Stroke: causes and clinical features. Medicine (Abingdon). 2020Sep; 48:(9):561–566. doi: 10.1016/j.mpmed.2020.06.002.
    [Google Scholar]
  3. Donkor ES. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018 Nov 27;2018:3238165. doi: 10.1155/2018/3238165.
    [Google Scholar]
  4. Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ. 2015 Sep 8; 187:(12):887–893. doi: 10.1503/cmaj.140355.
    [Google Scholar]
  5. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology. 2015; 45:(3):161–176. doi: 10.1159/000441085.
    [Google Scholar]
  6. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016 Apr 23; 387:(10029):1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
    [Google Scholar]
  7. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, et al. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. JAMA. 2017 Aug1; 318:(5):443–452. doi: 10.1001/jama.2017.9644.
    [Google Scholar]
  8. Wang X, Ye Z, Busse JW, Hill MD, Smith EE, Guyatt GH, et al. Endovascular thrombectomy with or without intravenous alteplase for acute ischemic stroke due to large vessel occlusion: a systematic review and meta-analysis of randomized trials. Stroke Vasc Neurol. 2022Dec; 7:(6):510–517. doi: 10.1136/svn-2022-001547.
    [Google Scholar]
  9. Rabinstein AA, Albers GW, Brinjikji W, Koch S. Factors that may contribute to poor outcome despite good reperfusion after acute endovascular stroke therapy. Int J Stroke. 2019Jan; 14:(1):23–31. doi: 10.1177/1747493018799979.
    [Google Scholar]
  10. Mulder MJHL, Ergezen S, Lingsma HF, Berkhemer OA, Fransen PSS, Beumer D, et al. Baseline blood pressure effect on the benefit and safety of intra-arterial treatment in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands). Stroke. 2017Jul; 48:(7):1869–1876. doi: 10.1161/STROKEAHA.116.016225.
    [Google Scholar]
  11. Katsanos AH, Malhotra K, Ahmed N, Seitidis G, Mistry EA, Mavridis D, et al. Blood pressure after endovascular thrombectomy and outcomes in patients with acute ischemic stroke: an individual patient data meta-analysis. Neurology. 2022 Jan 18; 98:(3):e291–e301. doi: 10.1212/WNL.0000000000013049.
    [Google Scholar]
  12. Zhou Y, Chen Z, Fang J, Huang G. Blood pressure targets for acute ischemic stroke patients following endovascular thrombectomy: a meta-analysis. Clin Neurol and Neurosurg. 2023 Aug:231:107835. doi: 10.1016/j.clineuro.2023.107835.
    [Google Scholar]
  13. Anadani M, Orabi MY, Alawieh A, Goyal N, Alexandrov AV, Petersen N, et al. Blood pressure and outcome after mechanical thrombectomy with successful revascularization: a multicenter study. Stroke. 2019Sep; 50:(9):2448–2454. doi: 10.1161/STROKEAHA.118.024687.
    [Google Scholar]
  14. Goyal N, Tsivgoulis G, Pandhi A, Chang JJ, Dillard K, FIshfaq M, et al. Blood pressure levels post mechanical thrombectomy and outcomes in large vessel occlusion strokes. Neurology. 2017 Aug 8; 89:(6):540–547. doi: 10.1212/WNL.0000000000004184.
    [Google Scholar]
  15. Choi KH, Kim JM, Kim JH, Kim J-T, Park M-S, Choi S-M, et al. Optimal blood pressure after reperfusion therapy in patients with acute ischemic stroke. Sci Rep. 2019 Apr 5; 9:(1):5681. doi: 10.1038/s41598-019-42240-8.
    [Google Scholar]
  16. Front Matter. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Wiley; 2019. p. i–xxviii. ISBN: 978-1-119-53662-8.
  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021Mar 29;372:n71. doi: 10.1136/bmj.n71.
    [Google Scholar]
  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019Aug 28;366:l4898. doi: 10.1136/bmj.l4898.
    [Google Scholar]
  19. Higgins JPT, Thompson SG, Deeks JJ, Altman, DG. Measuring inconsistency in meta-analyses. BMJ. 2003Sep 6; 327:(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    [Google Scholar]
  20. Nam HS, Kim YD, Heo J, Lee H, Jung JW, Choi JK, et al. Intensive vs conventional blood pressure lowering after endovascular thrombectomy in acute ischemic stroke: the OPTIMAL-BP randomized clinical trial. JAMA. 2023Sep 5; 330:(9):832–842. doi: 10.1001/jama.2023.14590.
    [Google Scholar]
  21. Mazighi M, Richard S, Lapergue B, Sibon I, Gory B, Berge J, et al. Safety and efficacy of intensive blood pressure lowering after successful endovascular therapy in acute ischaemic stroke (BP-TARGET): a multicentre, open-label, randomised controlled trial. Lancet Neurol. 2021 Apr; 20:(4):265–274. doi: 10.1016/S1474-4422(20)30483-X.
    [Google Scholar]
  22. Yang P, Song L, Zhang Y, Chen X, Li Y, Sun L, et al. Intensive blood pressure control after endovascular thrombectomy for acute ischaemic stroke (ENCHANTED2/MT): a multicentre, open-label, blinded-endpoint, randomised controlled trial. Lancet. 2022Nov 5;400(10363):1585–1596. doi: 10.1016/S0140-6736(22)01882-7.
    [Google Scholar]
  23. Anderson CS, Huang Y, Lindley RI, Chen X, Arima H, Chen G, et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet. 2019Mar 2; 393:(10174):877–888. doi: 10.1016/S0140-6736(19)30038-8.
    [Google Scholar]
  24. Maier IL, Tsogkas I, Behme D, Bähr M, Knauth M, Psychogios M-N, et al. High systolic blood pressure after successful endovascular treatment affects early functional outcome in acute ischemic stroke. Cerebrovasc Dis. 2018; 45:(1–2):18–25. doi: 10.1159/000484720.
    [Google Scholar]
  25. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zopp. GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999Jun; 19:(6):624–633. doi: 10.1097/00004647-199906000-00005.
    [Google Scholar]
  26. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke Organisation (ESO)-European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J Neurointerv Surg. 2023Aug; 15:(8):e8. doi: 10.1136/neurintsurg-2018-014569.
    [Google Scholar]
  27. Malhotra K, Goyal N, Katsanos AH, Filippatou A, Mistry EA, Khatri P, et al. Association of blood pressure with outcomes in acute stroke thrombectomy. Hypertension. 2020Mar; 75:(3):730–739. doi: 10.1161/HYPERTENSIONAHA.119.14230.
    [Google Scholar]
  28. Anadani M, Arthur AS, Tsivgoulis G, Simpson KN, Alawieh A, Orabi Y, et al. Blood pressure goals and clinical outcomes after successful endovascular therapy: a multicenter study. Ann Neurol. 2020Jun; 87:(6):830–839. doi: 10.1002/ana.25716.
    [Google Scholar]
  29. Matusevicius M, Cooray C, Bottai M, Mazya M, Tsivgoulis G, Nunes AP, et al. Blood pressure after endovascular thrombectomy: modeling for outcomes based on recanalization status. Stroke. 2020Feb; 51:(2):519–525. doi: 10.1161/STROKEAHA.119.026914.
    [Google Scholar]
  30. DeMets DL, Lan KK. Interim analysis: the alpha spending function approach. Stat Med. 1994 Jul; 13:(13–14):1341–1352. doi: 10.1002/sim.4780131308.
    [Google Scholar]
  31. Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009Mar 1; 30:(3):525–531. doi: 10.3174/ajnr.A1408.
    [Google Scholar]
  32. Maïer B, Delvoye F, Labreuche J, Escalard S, Desilles J-P, Redje H. et al. Impact of blood pressure after successful endovascular therapy for anterior acute ischemic stroke: a systematic review. Front Neurol. 2020Oct 29;11:573382. doi: 10.3389/fneur.2020.573382.
    [Google Scholar]
  33. Jeong HG, Kim BJ, Kim H, Jung C, Han M-K, Liebeskin DS, et al. Blood pressure drop and penumbral tissue loss in nonrecanalized emergent large vessel occlusion. Stroke. 2019Oct; 50:(10):2677–2684. doi: 10.1161/STROKEAHA.119.025426.
    [Google Scholar]
  34. Kim TJ, Park HK, Kim JM, Lee JS, Park SH, Jeong HB, et al. Blood pressure variability and hemorrhagic transformation in patients with successful recanalization after endovascular recanalization therapy: a retrospective observational study. Ann Neurol. 2019Apr; 85:(4):574–581. doi: 10.1002/ana.25434.
    [Google Scholar]
  35. Maïer B, Gory B, Taylor G, Labreuche J, Blanc R, Obadia M, et al. Mortality and disability according to baseline blood pressure in acute ischemic stroke patients treated by thrombectomy: a collaborative pooled analysis. J Am Heart Assoc. 2017Oct 10; 6:(10):e006484. doi: 10.1161/JAHA.117.006484.
    [Google Scholar]
  36. Lattanzi S, Silvestrini M, Provinciali L. Elevated BP in the acute phase of stroke and the role of Angiotensin receptor blockers. Int J Hypertens. 2013;2013:941783. doi: 10.1155/2013/941783.
    [Google Scholar]
  37. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005Jul 1; 39:(1):51–70. doi: 10.1016/j.freeradbiomed.2005.03.035.
    [Google Scholar]
  38. Alqadri SL, Sreenivasan V, Qureshi AI. Acute hypertensive response management in patients with acute stroke. Curr Cardiol Rep. 2013Dec; 15:(12):426. doi: 10.1007/s11886-013-0426-7.
    [Google Scholar]
  39. John S, Hazaa W, Uchino K, Hussain MS. Timeline of blood pressure changes after intra-arterial therapy for acute ischemic stroke based on recanalization status. J Neurointerv Surg. 2017May; 9:(5):455–458. doi: 10.1136/neurintsurg-2016-012369.
    [Google Scholar]
  40. Singh R-J, Chen S, Ganesh A, Hill MD. Long-term neurological, vascular, and mortality outcomes after stroke. Int J Stroke. 2018Oct; 13:(8):787–796. doi: 10.1177/1747493018798526.
    [Google Scholar]
  41. Reeves M, Lisabeth L, Williams L, Katzan I, Kapral M, Deutsch A, et al. Patient-reported outcome measures (PROMs) for acute stroke: rationale, methods and future directions. Stroke. 2018Jun; 49:(6):1549–1556. doi: 10.1161/STROKEAHA.117.018912.
    [Google Scholar]
  42. Brott T, Lu M, Kothari R, Fagan SC, Frankel M, Grotta JC, et al. Hypertension and its treatment in the NINDS rt-PA Stroke Trial. Stroke. 1998Aug; 29:(8):1504–1509. doi: 10.1161/01.str.29.8.1504.
    [Google Scholar]
  43. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, et al. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. Stroke. 2010Jan 1; 41:(1):72–77. doi: 10.1161/STROKEAHA.109.563767.
    [Google Scholar]
  44. Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015Mar; 28:(3):289–299. doi: 10.1093/ajh/hpu197.
    [Google Scholar]
/content/journals/10.5339/qmj.2025.21
Loading
/content/journals/10.5339/qmj.2025.21
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error