-
oa Breakthrough coastal research of Qatar as input to geological and reservoir modeling
- Publisher: Hamad bin Khalifa University Press (HBKU Press)
- Source: Qatar Foundation Annual Research Forum Proceedings, Qatar Foundation Annual Research Forum Volume 2012 Issue 1, Oct 2012, Volume 2012, EEO12
Abstract
Maximizing recovery in oil and gas fields relies on geological models that realistically portray the spatial complexity, composition, and properties of reservoir units. Present day arid climate coastal systems, like the coastline of Qatar provide analogues for depositional and diagenetic processes that control reservoir quality in ancient reservoirs. Many major reservoirs in Qatar are formed under conditions that are remarkably similar to those shaping the coastlines of today. Among the major controls on coastal sedimentation patterns are: 1) wind, wave and tidal energy, 2) coastline orientation, 3) relative sea level, 4) depositional relief and 5) sediment sources. Strong NW prevailing winds (shamal winds) drive shallow marine circulation patterns, creating four very distinct coastal profiles: windward, leeward, oblique, and protected. In addition, winds supply quartz sand to the leeward coast, as the dune fields of Khor Al-Adaid are blown into the sea. Elsewhere, carbonate sands are formed by wave breakdown of skeletal material in the shallow marine environment. These sands are washed ashore to form beaches. The grain size, composition, and dimensions of coastal sands vary due to wave energy. Coastal deposits are equally affected by high frequency oscillations in sea level. Approximately 8,000 years ago, the sea level was about 3 meters higher than it is currently and the Qatari coastline was up to 15 km inland. Most coastal deposits and sabkhas are relicts of this ancient highstand in sea level. Punctuated sea level drops to present day levels have led to the formation of seaward-stepping spit systems. Understanding these coastal and near coastal areas, the processes that form them, and developing geologic models based on this understanding, is a focus of the Qatar Center for Coastal Research (QCCR) within ExxonMobil Research Qatar. The observed spatial complexity and heterogeneity of modern coastal systems are important aspects to be considered for conditioning three-dimensional geological models. The studied modern outcrops along the Qatar coastline are particularly useful as analogs for conditioning subsurface data sets in geologic (static) and reservoir (dynamic) models.