1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  • EISSN:
Preview this article:

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.16
2011-12-30
2025-01-02
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.16.html?itemId=/content/journals/10.5339/ahcsps.2011.16&mimeType=html&fmt=ahah

References

  1. El-Hamamsy  I and Yacoub  MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nature Reviews Cardiology. 2009; 6::
    [Google Scholar]
  2. Dagum  P, Green  GR and Nistal  FJ  et al. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation. 1999; 100::II54II62.
    [Google Scholar]
  3. Yacoub  MH, Kilner  PJ, Birks  EJ and Misfeld  M. The aortic outflow and root: a tale of dynamism and crosstalk. Annals of the Thoracic Surgery. 1999; 68::S37S43.
    [Google Scholar]
  4. Lansac  E, Lim  HS and Shomura  Y  et al. A four-dimensional study of the aortic root dynamics. Eur J Cardiothorac Surg. 2002; 22::497503.
    [Google Scholar]
  5. Miller  DC, Cheng  A and Dagum  P. Aortic root dynamics and surgery: from craft to science. Philosophical Transactions of the Royal Society B-Biological Sciences. 2007; 362::14071419.
    [Google Scholar]
  6. Higashidate  . Regulation of the aortic valve opening: In vivo dynamic measurement of aortic valve orifice area. Journal of Thoracic and Cardiovascular Surgery. 1995; 110::496503.
    [Google Scholar]
  7. Lansac  E, Lim  HS and Shomura  Y  et al. Aortic root dynamics are asymmetric. J Heart Valve Dis. 2005; 14::400407.
    [Google Scholar]
  8. Davies  JE, Parker  KH, Francis  DP, Hughes  AD and Mayet  J. What is the role of the aorta in directing coronary blood flow? Heart. 2008; 94::15451547.
    [Google Scholar]
  9. Womersley  JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Journal of Physiology. 1955; 127::553563.
    [Google Scholar]
  10. Nakamura  M, Wada  S and Yamaguchi  T. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta. J Biomech Eng. 2006; 128::837843.
    [Google Scholar]
  11. Augst  AD, Barratt  DC, Hughes  AD, Glor  FP, Mc  GTSA and Xu  XY. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J Biomech Eng. 2003; 125::218222.
    [Google Scholar]
  12. Glor  FP, Long  Q and Hughes  AD  et al. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Annals of Biomedical Engineering. 2003; 31::142151.
    [Google Scholar]
  13. Kung  EO, Les  AS, Medina  F, Wicker  RB, McConnell  MV and Taylor  CA. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng. 2011; 133::041003.
    [Google Scholar]
  14. Ku  JP, Elkins  CJ and Taylor  CA. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann Biomed Eng. 2005; 33::257269.
    [Google Scholar]
  15. Tan  FPP, Torii  R, Borghi  A, Mohiaddin  RH, Wood  NB and Xu  XY. Fluid–structure interaction analysis of wall stress and flow patterns in a thoracic aortic aneurysm. International Journal of Applied Mechanics. 2009; 1::179199.
    [Google Scholar]
  16. Ku  JP, Draney  MT and Arko  FR  et al. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann Biomed Eng. 2002; 30::743752.
    [Google Scholar]
  17. Malek  AM, Alper  SL and Izumo  S. Hemodynamic shear stress and its role in atherosclerosis. The Journal of the American Medical Association. 1999; 282::20352042.
    [Google Scholar]
  18. Cheng  C, Helderman  F and Tempel  D  et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 2007; 195::225235.
    [Google Scholar]
  19. Kilner  PJ, Yang  GZ, Mohiaddin  RH, Firmin  DN and Longmore  DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993; 88::22352247.
    [Google Scholar]
  20. Long  Q, Merrifield  R, Xu  XY, Kilner  P, Firmin  DN and G-Z  Y. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc Inst Mech Eng H. 2008; 222::475485.
    [Google Scholar]
  21. Faludi  R, Szulik  M and D’Hooge  J  et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg. 2010; 139::15011510.
    [Google Scholar]
  22. Suo  J, Oshinski  J and Giddens  DP. Effects of wall motion and compliance on flow patterns in the ascending aorta. Journal of Biomechanical Engineering. 2003; 125::347354.
    [Google Scholar]
  23. Morbiducci  U, Ponzini  R and Rizzo  G  et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol. 2011; 10::339355.
    [Google Scholar]
  24. Ng  AC, Yiu  KH and Ewe  SH  et al. Influence of left ventricular geometry and function on aortic annular dimensions as assessed with multi-detector row computed tomography: implications for transcatheter aortic valve implantation. Eur Heart J. 2011;
    [Google Scholar]
  25. Burman  ED, Keegan  J and Kilner  PJ. Aortic root measurement by cardiovascular magnetic resonance: specification of planes and lines of measurement and corresponding normal values. Circ Cardiovasc Imaging. 2008; 1::104113.
    [Google Scholar]
  26. Wille  SO. Numerical simulations of steady flow inside a three dimensional aortic bifurcation model. J Biomed Eng. 1984; 6::4955.
    [Google Scholar]
  27. Taylor  TW and Yamaguchi  T. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm–steady and unsteady flow cases. J Biomech Eng. 1994; 116::8997.
    [Google Scholar]
  28. Wood  NB, Weston  SJ, Kilner  PJ, Gosman  AD and Firmin  DN. Combined MR imaging and CFD simulation of flow in the human descending aorta. J Magn Reson Imaging. 2001; 13::699713.
    [Google Scholar]
  29. Mori  D, Liu  H and Yamaguchi  T. Computational simulation of flow in the aortic arch - (Influence of the 3-D distortion on flows in the ordinary helix circular tube). Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing. 2000; 43::862866.
    [Google Scholar]
  30. Leuprecht  A, Perktold  K, Kozerke  S and Boesiger  P. Combined CFD and MRI study of blood flow in a human ascending aorta model. Biorheology. 2002; 39::425429.
    [Google Scholar]
  31. Black  MM, Hose  DR and Lawford  PV. The origin and significance of secondary flows in the aortic arch. J Med Eng Technol. 1995; 19::192197.
    [Google Scholar]
  32. Shahcheraghi  N, Dwyer  HA, Cheer  AY, Barakat  AI and Rutaganira  T. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng. 2002; 124::378387.
    [Google Scholar]
  33. Kito  H, Yokoyama  C, Inoue  H, Tanabe  T, Nakajima  N and Sumpio  BE. Cyclooxygenase expression in bovine aortic endothelial cells exposed to cyclic strain. Endothelium. 1998; 6::107112.
    [Google Scholar]
  34. Metzler  SA, Pregonero  CA, Butcher  JT, Burgess  SC and Warnock  JN. Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J Heart Valve Dis. 2008; 17::571577. discussion 578 .
    [Google Scholar]
  35. El-Hamamsy  I, KBalachandran  K and Yacoub  MH  et al. Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. Journal of the American College of Cardiology. 2009; 53::14481455.
    [Google Scholar]
  36. Role  L, Bogen  D, McMahon  TA and Abelmann  WH. Regional variations in calculated diastolic wall stress in rat left ventricle. Am J Physiol. 1978; 235::H247H250.
    [Google Scholar]
  37. Cataloglu  A, Clark  RE and Gould  PL. Stress analysis of aortic valve leaflets with smoothed geometrical data. J Biomech. 1977; 10::153158.
    [Google Scholar]
  38. Raghavan  ML and Vorp  DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 2000; 33::475482.
    [Google Scholar]
  39. Gasser  TC, Ogden  RW and Holzapfel  GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 2006; 3::1535.
    [Google Scholar]
  40. Kim  HJ, Vignon-Clementel  IE, Coogan  JS, Figueroa  CA, Jansen  KE and Taylor  CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010; 38::31953209.
    [Google Scholar]
  41. Husmann  L, Leschka  S and Desbiolles  L  et al. Coronary artery motion and cardiac phases: dependency on heart rate — implications for CT image reconstruction. Radiology. 2007; 245::567576.
    [Google Scholar]
  42. Suo  J, Oshinski  JN and Giddens  DP. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence. Mol Cell Biomech. 2008; 5::918.
    [Google Scholar]
  43. Torii  R, Keegan  J and Wood  NB  et al. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary. British Journal of Radiology. 2009; 82::S24S32.
    [Google Scholar]
  44. Torii  R, Keegan  J and Wood  NB  et al. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering. 2010; 38::26062620.
    [Google Scholar]
  45. Yacoub  MH and El-Hamamsy  I. The private life of tissue valves. Nature Reviews Cardiology. 2010; 7::424426.
    [Google Scholar]
  46. Liu  X, Weale  P and Reiter  G  et al. Breathhold time-resolved three-directional MR velocity mapping of aortic flow in patients after aortic valve-sparing surgery. Journal of Magnetic Resonance Imaging. 2009; 29::569575.
    [Google Scholar]
  47. Robicsek  F and Thubrikar  MJ. Role of sinus wall compliance in aortic leaflet function. Am J Cardiol. 1999; 84::944946. A7 .
    [Google Scholar]
  48. Katayama  S, Umetani  N, Sugiura  S and Hisada  T. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Thorac Cardiovasc Surg. 2008; 136::15281535. 1535 e1 .
    [Google Scholar]
  49. de Tullio  MD, Pedrizzetti  G and Verzicco  R. On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mechanica. 2011; 216::147163.
    [Google Scholar]
  50. Bakhtiary  F, Schiemann  M and Dzemali  O  et al. Stentless bioprostheses improve postoperative coronary flow more than stented prostheses after valve replacement for aortic stenosis. J Thorac Cardiovasc Surg. 2006; 131::883888.
    [Google Scholar]
  51. Bakhtiary  F, Abolmaali  N and Dzemali  O  et al. Impact of mechanical and biological aortic valve replacement on coronary perfusion: a prospective, randomized study. J Heart Valve Dis. 2006; 15::511. discussion 11 .
    [Google Scholar]
  52. Cheng  C, Tampel  D and van Haperen  R  et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006; 113::27442753.
    [Google Scholar]
  53. Jackson MJ,Wood NB andZhao SZet al.Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery Research, In press 2009;.
  54. Augst  AD, Ariff  B, Thom  SA, Xu  XY and Hughes  AD  et al. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. American Journal of Physiology. Heart and Circulatory Physiology. 2007; 293::10311037.
    [Google Scholar]
  55. Ku  DN, Giddens  DP, Zarins  CK and Glagov  S. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis. 1985; 5::293302.
    [Google Scholar]
  56. Zureik  M, Ducimetiere  P and Touboul  PJ  et al. Common carotid intima-media thickness predicts occurrence of carotid atherosclerotic plaques: longitudinal results from the aging vascular study (EVA) study. Arterioscler Thromb Vasc Biol. 2000; 20::16221629.
    [Google Scholar]
  57. Gijsen  FJ, Mastik  F and Schaar  JA  et al. High shear stress induces a strain increase in human coronary plaques over a 6-month period. EuroIntervention. 2011; 7::121127.
    [Google Scholar]
  58. Cheng  C, Tempel  D and van Haperen  R  et al. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines. J Clin Invest. 2007; 117::616626.
    [Google Scholar]
  59. Dancu  MB, Berardi  DE, Vanden Heuvel  JP and Tarbell  JM. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and Cyclooxygenase-2 but induces Endothelin-1 gene expression in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004; 24::20882094.
    [Google Scholar]
  60. Dancu  MB, Berardi  DE, Vanden Heuvel  JP and Tarbell  JM. Atherogenic endothelial cell eNOS and ET-1 responses to asynchronous hemodynamics are mitigated by conjugated linoleic acid. Annals of Biomedical Engineering. 2007; 35::11111119.
    [Google Scholar]
  61. Dancu  MB and Tarbell  JM. Large negative stress phase angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells. Journal of Biomechanical Engineering, Transaction of ASME. 2006; 128::6.
    [Google Scholar]
  62. Qiu  Y and Tarbell  JM. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. Journal of Vascular Research. 2000; 37::147157.
    [Google Scholar]
  63. Tada  S and Tarbell  JM. A computational study of flow in a compliant carotid bifurcation — stress phase angle correlation with shear stress. Annals of Biomedical Engineering. 2005; 33::12021212.
    [Google Scholar]
  64. Krams  R, Cheng  C and Helderman  F  et al. Shear stress is associated with markers of plaque vulnerability and MMP-9 activity. EuroIntervention. 2006; 2::250256.
    [Google Scholar]
  65. Vincent  PE, Plata  AM, Hunt  AA, Weinberg  PD and Sherwin  SJ. Blood flow in the rabbit aortic arch and descending thoracic aorta. J R Soc Interface. 2011;
    [Google Scholar]
  66. Deck  JD. Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res. 1986; 20::760767.
    [Google Scholar]
  67. Gardin  JM, Burn  CS, Childs  WJ and Henry  WL. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. Am Heart J. 1984; 107::310319.
    [Google Scholar]
  68. Clark  C. Turbulent Velocity-Measurements in a Model of Aortic-Stenosis. Journal of Biomechanics. 1976; 9::677687.
    [Google Scholar]
  69. Bonow  RO, Carabello  BA and Chatterjee  K  et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2006; 48::e1148.
    [Google Scholar]
  70. Garcia  D and Kadem  L. What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? J Heart Valve Dis. 2006; 15::601608.
    [Google Scholar]
  71. Seiler  C and Jenni  R. Severe aortic stenosis without left ventricular hypertrophy: prevalence, predictors, and short-term follow up after aortic valve replacement. Heart. 1996; 76::250255.
    [Google Scholar]
  72. Chambers  J. The left ventricle in aortic stenosis: evidence for the use of ACE inhibitors. Heart. 2006; 92::420423.
    [Google Scholar]
  73. Little  SH, Chan  KL and Burwash  IG. Impact of blood pressure on the Doppler echocardiographic assessment of severity of aortic stenosis. Heart. 2007; 93::848855.
    [Google Scholar]
  74. Otto  CM, Burwash  IG and Legget  ME  et al. Prospective study of asymptomatic valvular aortic stenosis. clinical, echocardiographic, and exercise predictors of outcome. Circulation. 1997; 95::22622270.
    [Google Scholar]
  75. Pibarot  P and Dumesnil  JG. Prosthesis-patient mismatch. Aswan Heart Centre Science & Practice Series. 2011; 7:: http://dx.doi.org/10.5339/ahcsps.2011.7 .
    [Google Scholar]
  76. Briand  M, Dumesnil  JG and Kadem  L  et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis. Journal of the American College of Cardiology. 2005; 46::291298.
    [Google Scholar]
  77. Viscardi  F, Vergara  C and Antiga  L  et al. Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artificial Organs. 2010; 34::11141120.
    [Google Scholar]
  78. Bauer  M, Siniawski  H, Pasic  M, Schaumann  B and Hetzer  R. Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J Card Surg. 2006; 21::218220.
    [Google Scholar]
  79. Tadros  TM, Klein  MD and Shapira  OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009; 119::880890.
    [Google Scholar]
  80. Cheng  Z, Tan  FP and Riga  CV  et al. Analysis of flow patterns in a patient-specific aortic dissection model. J Biomech Eng. 2010; 132::051007.
    [Google Scholar]
  81. Clark  C. Energy losses in flow through stenosed valves. J Biomech. 1979; 12::737746.
    [Google Scholar]
  82. Fernandes  SM, Khairy  P, Sanders  SP and Colan  SD. Bicuspid aortic valve morphology and interventions in the young. J Am Coll Cardiol. 2007; 49::22112214.
    [Google Scholar]
  83. Schaefer  BM, Lewin  MB and Stout  KK  et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008; 94::16341638.
    [Google Scholar]
  84. Barker  AJ, Lanning  C and Shandas  R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Annals of Biomedical Engineering. 2010; 38::788800.
    [Google Scholar]
  85. Barker  AJ and Markl  M. The role of hemodynamics in bicuspid aortic valve disease. Eur J Cardiothorac Surg. 2011; 39::805806.
    [Google Scholar]
  86. Markl  M, Wallis  W and Harloff  A. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging. 2011; 33::988994.
    [Google Scholar]
  87. Markl  M, Chan  FP and Alley  MT  et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003; 17::499506.
    [Google Scholar]
  88. Weigang  E, Kari  FA and Beyersdorf  F  et al. Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms. Eur J Cardiothorac Surg. 2008; 34::1116.
    [Google Scholar]
  89. Adham  M, Gournier  JP and Favre  JP  et al. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res. 1996; 64::3234.
    [Google Scholar]
  90. Vorp  DA, Schiro  BJ, Ehrlich  MP, Juvonen  TS, Ergin  MA and Griffith  BP. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann Thorac Surg. 2003; 75::12101214.
    [Google Scholar]
  91. Sommer  G, Gasser  TC, Regitnig  P, Auer  M and Holzapfel  GA. Dissection properties of the human aortic media: an experimental study. J Biomech Eng. 2008; 130::021007.
    [Google Scholar]
  92. Doyle  BJ, Cloonan  AJ, Walsh  MT, Vorp  DA and McGloughlin  TM. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech. 2010; 43::14081416.
    [Google Scholar]
  93. Malkawi  AH, Hinchliffe  RJ, Xu  Y, Holt  PJ, Loftus  IM and Thompson  MM. Patient-specific biomechanical profiling in abdominal aortic aneurysm development and rupture. J Vasc Surg. 2010; 52::480488.
    [Google Scholar]
  94. Maier  A, Gee  MW, Reeps  C, Pongratz  J, Eckstein  HH and Wall  WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010; 38::31243134.
    [Google Scholar]
  95. Vande Geest  JP, Di Martino  ES, Bohra  A, Makaroun  MS and Vorp  DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci. 2006; 1085::1121.
    [Google Scholar]
  96. Rachev  A. Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomech. 1997; 30::819827.
    [Google Scholar]
  97. Sabbah  HN, Hamid  MS and Stein  PD. Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann Thorac Surg. 1986; 42::9396.
    [Google Scholar]
  98. Thubrikar  MJ, Aouad  J and Nolan  SP. Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol. 1986; 58::304308.
    [Google Scholar]
  99. Hamid  MS, Sabbah  HN and Stein  PD. Vibrational analysis of bioprosthetic heart valve leaflets using numerical models: effects of leaflet stiffening, calcification, and perforation. Circ Res. 1987; 61::687694.
    [Google Scholar]
  100. Speelman  L, Bohra  A and Bosboom  EM  et al. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng. 2007; 129::105109.
    [Google Scholar]
  101. Walraevens  J, Willaert  B, De Win  G, Ranftl  A, De Schutter  J and Sloten  JV. Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Medical Engineering & Physics. 2008; 30::10981104.
    [Google Scholar]
  102. Conti  CA, Della Corte  A and Votta  E  et al. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg. 2010; 140::890896. 896 e1–2 .
    [Google Scholar]
  103. Grande  KJ, Cochran  RP, Reinhall  PG and Kunzelman  KS. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann Thorac Surg. 2000; 69::18511857.
    [Google Scholar]
  104. Ross  DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967; 2::956958.
    [Google Scholar]
  105. El-Hamamsy  I, Eryigit  Z and Stevens  L  et al. Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial. Lancet. 2010; 376::524531.
    [Google Scholar]
  106. El-Hamamsy  I, Clark  L and Stevens  LM  et al. Late outcomes following freestyle versus homograft aortic root replacement: Results from a prospective randomized trial. Journal of the American College of Cardiology. 2010; 55::368376.
    [Google Scholar]
  107. Elefteriades  JA. Should we abandon homografts? Journal of the American College of Cardiology. 2010; 55::377378.
    [Google Scholar]
  108. Wilhelmi  MH. Long-term cardiac allogreaft valves after heart transplant are functionally and structurally preserved, in contrast to homografts and bioprosthesis. Journal of Heart Valve Disease. 2006; 15::777782.
    [Google Scholar]
  109. Travis  BR, Christensen  TD, Smerup  M, Olsen  MS, Hasenkam  JM and Nygaard  H. In-vivo turbulent stresses of bileaflet prosthesis leakage jets. J Heart Valve Dis. 2005; 14::644656.
    [Google Scholar]
  110. Dumont  K, Vierendeels  J, Kaminsky  R, van Nooten  G, Verdonck  P and Bluestein  D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng. 2007; 129::558565.
    [Google Scholar]
  111. Yoganathan  AP, Sung  HW, Woo  YR and Jones  M. In vitro velocity and turbulence measurements in the vicinity of three new mechanical aortic heart valve prostheses: Bjork–Shiley monostrut, omni-carbon, and duromedics. J Thorac Cardiovasc Surg. 1988; 95::929939.
    [Google Scholar]
  112. Walker  PG and Yoganathan  AP. In vitro pulsatile flow hemodynamics of five mechanical aortic heart valve prostheses. Eur J Cardiothorac Surg. 1992; 6::Suppl 1, S113S123.
    [Google Scholar]
  113. de Tullio  MD, Pascazio  G, Weltert  L, De Paulis  R and Verzicco  R. Evaluation of prosthetic-valved devices by means of numerical simulations. Philos Transact A Math Phys Eng Sci. 2011; 369::25022509.
    [Google Scholar]
  114. King  MJ, Corden  J, David  T and Fisher  J. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech. 1996; 29::609618.
    [Google Scholar]
  115. Ge  L, Dasi  LP, Sotiropoulos  F and Yoganathan  AP. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng. 2008; 36::276297.
    [Google Scholar]
  116. Matsue  H, Sawa  Y, Matsumiya  G, Matsuda  H and Hamada  S. Mid-term results of freestyle aortic stentless bioprosthetic valve: clinical impact of quantitative analysis of in-vivo three-dimensional flow velocity profile by magnetic resonance imaging. J Heart Valve Dis. 2005; 14::630636.
    [Google Scholar]
  117. Melina  G, Mitchell  A, Amrani  M, Khaghani  A and Yacoub  MH. Transvalvular velocities after full aortic root replacement: results from a prospective randomized trial between the homograft and the Medtronic Freestyle bioprosthesis. J Heart Valve Dis. 2002; 11::5458. discussion 58–9 .
    [Google Scholar]
  118. Dumesnil  JG, LeBlanc  MH and Cartier  PC  et al. Hemodynamic features of the freestyle aortic bioprosthesis compared with stented bioprosthesis. Ann Thorac Surg. 1998; 66::S130S133.
    [Google Scholar]
  119. Steinbruchel  DA, Hasenkam  JM, Nygaard  H, Riis  CM and Sievers  HH. Blood velocity patterns after aortic valve replacement with a pulmonary autograft. Eur J Cardiothorac Surg. 1997; 12::873875.
    [Google Scholar]
  120. Lupinetti  FM, Duncan  BW, Lewin  M, Dyamenahalli  U and Rosenthal  GL. Comparison of autograft and allograft aortic valve replacement in children. J Thorac Cardiovasc Surg. 2003; 126::240246.
    [Google Scholar]
  121. Jin  XY, Zhang  ZM, Gibson  DG, Yacoub  MH and Pepper  JR. Effects of valve substitute on changes in left ventricular function and hypertrophy after aortic valve replacement. Ann Thorac Surg. 1996; 62::683690.
    [Google Scholar]
  122. Silberman  S, Shaheen  J and Merin  O  et al. Exercise hemodynamics of aortic prostheses: comparison between stentless bioprostheses and mechanical valves. Ann Thorac Surg. 2001; 72::12171221.
    [Google Scholar]
  123. Porter  GF, Skillington  PD, Bjorksten  AR, Morgan  JG, Yapanis  AG and Grigg  LE. Exercise hemodynamic performance of the pulmonary autograft following the Ross procedure. J Heart Valve Dis. 1999; 8::516521.
    [Google Scholar]
  124. Luciani  GB, Viscardi  F, Puppini  G, Faggian  G and Mazzucco  A. Aortic root physiology late after a “perfect” ross operation: magnetic resonance imaging study of three operative techniques. Artif Organs. 2011;
    [Google Scholar]
  125. Peskin  CS and McQueen  DM. A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. Journal of Computational Physics. 1989; 81::372405.
    [Google Scholar]
  126. Peskin CS andMcQueen DM. A three-dimensional computational method for blood flow in the heart. II. contractile fibers. 1989;82:289–297.
  127. Griffith  BE, Luo  XY, McQueen  DM and Peskin  CS. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. International Journal of Applied Mechanics. 2009; 1::137177.
    [Google Scholar]
  128. Weinberg  EJ, Shahmirzadi  D and Mofrad  MR. On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol. 2010; 9::373387.
    [Google Scholar]
  129. Shadden  SC, Astorino  M and Gerbeau  JF. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos. 2010; 20::
    [Google Scholar]
  130. Ranga  A, Bouchot  O, Mongrain  R, Ugolini  P and Cartier  R. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg. 2006; 5::373378.
    [Google Scholar]
  131. De Hart  J, Peters  GW, Schreurs  PJ and Baaijens  FP. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech. 2003; 36::103112.
    [Google Scholar]
  132. De Hart  J, Peters  GW, Schreurs  PJ and Baaijens  FP. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech. 2004; 37::303311.
    [Google Scholar]
  133. Graeter  TP, Kindermann  M, Fries  R, Langer  F and Schafers  HJ. Comparison of aortic valve gradient during exercise after aortic valve reconstruction. Chest. 2000; 118::12711277.
    [Google Scholar]
  134. Leyh  RG, Schmidtke  C, Sievers  HH and Yacoub  MH. Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation. 1999; 100::21532160.
    [Google Scholar]
  135. Fries  R, Graeter  T and Aicher  D  et al. In vitro comparison of aortic valve movement after valve-preserving aortic replacement. J Thorac Cardiovasc Surg. 2006; 132::3237.
    [Google Scholar]
  136. Frydrychowicz  A, Berger  A, Stalder  AF and Markl  M. Preliminary results by flow-sensitive magnetic resonance imaging after Tiron David I procedure with an anatomically shaped ascending aortic graft. Interact Cardiovasc Thorac Surg. 2009; 9::155158.
    [Google Scholar]
  137. Roes  SD, Hammer  S and van der Geest  RJ  et al. Flow assessment throught four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective vavle tracking in healthy volunteers and patients with valvular regurgitation. Investigative Radiology. 2009; 44::669675.
    [Google Scholar]
  138. Brandts  A, Bertini  M and van Dijk  EJ  et al. Left ventricular diastolic function assessment from three-dimensional three-directional velocity-encoded MRI with retrospective valve tracking. J Magn Reson Imaging. 2011; 33::312319.
    [Google Scholar]
  139. Dowsey  AW, Keegan  J, Lerotic  M, Thom  SA, Firmin  DA and Yang  GZ. Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Medical Image Analysis. 2007; 11::478491.
    [Google Scholar]
  140. Grande-Allen  KJ, Cochran  RP, Reinhall  PG and Kunzelman  KS. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J Thorac Cardiovasc Surg. 2000; 119::753763.
    [Google Scholar]
  141. Grande-Allen  KJ, Cochran  RP, Reinhall  PG and Kunzelman  KS. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Transactions on Biomedical Engineering. 2001; 48::647659.
    [Google Scholar]
  142. Weltert  L, De Paulis  R, Scaffa  R, Maselli  D, Bellisario  A and D’Alessandro  S. Re-creation of a sinuslike graft expansion in Bentall procedure reduces stress at the coronary button anastomoses: a finite element study. J Thorac Cardiovasc Surg. 2009; 137::10821087.
    [Google Scholar]
  143. Matthews  PB, Azadani  AN and Jhun  CS  et al. Comparison of porcine pulmonary and aortic root material properties. Ann Thorac Surg. 2010; 89::19811988.
    [Google Scholar]
  144. Matthews  PB, Jhun  CS and Yaung  S  et al. Finite element modeling of the pulmonary autograft at systemic pressure before remodeling. J Heart Valve Dis. 2011; 20::4552.
    [Google Scholar]
  145. Carr-White  GS, Afoke  A and Birks  EJ  et al. Aortic root characteristics of human pulmonary autografts. Circulation. 2000; 102::III-15III-21.
    [Google Scholar]
/content/journals/10.5339/ahcsps.2011.16
Loading
/content/journals/10.5339/ahcsps.2011.16
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error