1887
Volume 5 (2024) Number 1
  • E-ISSN: 2708-0463

ملخص

يُعْتبرُ قطاع النسيج في تونس قوةً دافعةً للاقتصاد الوطني. ومع ذلك، فإن هذا القطاع يستهلك كمياتٍ كبيرةً من المياه العذبة، ومجموعة متنوعة من المواد الكيميائية، وبالتالي تُشكّل مياه الصرف الصحّي المُتأتية من قطاع النسيج تهديداً بيئيّاً. والغرض من هذه الدراسة هو البحث عن المُلَوّثات الموجودة في مياه الصرف الصحّي التي تم جمعها من ثلاثة مصانع للنسيج والتحقيق في تأثيرها على البيئة. وأظهرت التحاليل الفيزيوكيميائية (TSS ،BOD ،COD... إلخ) وجود نسبة عالية من المُلوّثات في العينات المُجمَّعة، كما كشف التحليل الكروماتوغرافي بواسطة UPLC-MS / MS عن وجود صبغة ثلاثي فينيل ميثان (الكريستال البنفسجي) في عينة واحدة. ويمكن أن يؤدي وجود الملوّثات الكيميائية في مياه الصرف الصحي لقطاع النسيج إلى تأثيرات ضارّة على النظام البيئي. في هذا السياق، تم إجراء تقييم للسُّميّة البيئية، باعتماد اختبار السُّمِّية خارج الجسم () في أنظمة الخلايا حقيقية النواة (اختبار المذنب). ولم نلاحظ أيّ آثار ذات صلة بيولوجية لأيّ من العيّنات المُختبرة. وأظهرت النتائج أيضاً أن عملية معالجة المياه المُستعملة باعتماد تقنية التخثر والتلبد لا تقلل من تركيز المُلوّثات. ولهذا السبب سعينا إلى استخدام مواد تخثر طبيعية كمسحوق ألواح التين الشوكي ومسحوق قشور الباذنجان . وأوضحت النتائج أن المعالجة باستخدام هذين المخثرين كانت فعّالة في تقليل تركيزات مؤشرات التلوث والسمية الجينية للعيّنات. وأَبْرَزت نتائج التحاليل أنَّ التركيز 0.8 غم/لتر مكّن من الحصول على أفضل النتائج بالنسبة لجميع المُخثرات الطبيعية المُستعملة. بعد مقارنة النتائج، لاحظنا أنَّ مسحوق ألواح التّين الشوكي كان تأثيره ملحوظاً في تقليل تركيزات مؤشرات التلوث؛ حيث تراوحت مختلف القيم بين BOD (119-63 مغ/لتر)، COD (204-97 مغ/لتر) وTSS (64-14 مغ/لتر)، كما أنّه أظهر النسب الأعلى والأفضل في إزالة المُلّونات (89.78%-92.87%).

The textile sector is a cornerstone of the Tunisian economy. However, this sector consumes significant volumes of fresh water and a wide variety of chemicals. Accordingly, derived wastewater is causing environmental disturbance. The objective of this study is to search for contaminants present in the finishing wastewater obtained from three textile industries and to investigate their environmental impact. The physicochemical analysis (COD, BOD, TSS, etc.) revealed a high pollutant load within the effluents collected from the three textile industries under investigation. Likewise, chromatographic analysis by UPLC-MS/MS revealed the presence of triphenylmethane (crystal violet) in one sample. The presence of micropollutants in textile wastewater could induce harmful effects on environmental flora and fauna. In this context, an ecotoxicological evaluation, bioassays (the comet test), was carried out. Results didn’t show any biologically relevant effects for all tested samples. The results also revealed that the coagulation-flocculation treatment process adopted by the textile industries is unable to reduce the pollutant load. For this reason, we have sought to use natural coagulants prepared from cactus and eggplant . The results showed that the treatment using these two biocoagulants was effective in reducing the pollutant load and the genotoxicity of the effluents. The best results of coagulation-floculation were obtained with the concentration of 0.8 g/L for all natural coagulants. After comparing the results, we noticed that cactus powder had a significant effect on reducing the concentrations of pollution indicators, different values ranged between BOD (63-119 mg/l), COD (97-204 mg/l) and TSS (14-64 mg/l). Moreover, it showed the highest percentages and the best in removing colorants (89.78% - 92.87%).

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/ajsr.2024.1
٢٠٢٤-٠٤-٣٠
٢٠٢٤-١٢-٢١
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/1/AJSR.2024.issue1.1.html?itemId=/content/journals/10.5339/ajsr.2024.1&mimeType=html&fmt=ahah

References

  1. Dellai A, Dridi D, Lemorvan V, Robert J, Cherif A, Mosrati R, et al. Decolorization does not always mean detoxification: Case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environmental Science and Pollution Research. 2013;20:5790–5796.
    [Google الباحث العلمي]
  2. Hai FI, Yamamoto K, Fukushi K. Hybrid treatment system for dye wastewater. Critical Reviews in Environmental Science and Technology. 2007;37:315–377.
    [Google الباحث العلمي]
  3. Jadhav SB, Chougule AS, Shah DP, Pereira CS, Jadhav JP. Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technologies and Environmental Policy. 2015;17:709–720.
    [Google الباحث العلمي]
  4. Faouzi J, Rezouki S, Bourhia M, Moubchir T, Abbou MB, Baammi S, . et al. Assessment of impacts of industrial effluents on physico-chemical and microbiological qualities of irrigation water of the Fez Rriver, Morocco. Environmental Geochemistry and Health. 2023;45:3933–3946.
    [Google الباحث العلمي]
  5. Jadhav SB, Phugare SS, Patil PS, Jadhav JP. Biochemical degradation pathway Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration and Biodegradation. 2011;65:733–743.
    [Google الباحث العلمي]
  6. Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DP, Umbuzeiro GA. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research. 2007;626:53–60.
    [Google الباحث العلمي]
  7. Schiliro T, Porfido A, Spina F, Varese GC, Gilli G. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay. Science of the Total Environment. 2012;432: 389–395.
    [Google الباحث العلمي]
  8. Suryavathi V, Sharma S, Sharma S, Saxena P, Pandey S, Grover R, . et al. Acute toxicity of textile dye wastewaters (untreated and treated) of Sanganer on male reproductive systems of albino rats and mice. Reproductive Toxicology. 2005;19:547–556.
    [Google الباحث العلمي]
  9. Makene VW, Tijani JO, Petrik LF, Pool EJ. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation–flocculation methods. Environmental Monitoring and Assessment. 2016;188:471.
    [Google الباحث العلمي]
  10. Cao JS, Lin JX, Fang F, Zhang MT, Hu ZR. A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology. 2014;163:199–205.
    [Google الباحث العلمي]
  11. Moraes SG, Freire RS, Duran N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere. 2000;40:369–373.
    [Google الباحث العلمي]
  12. Srinivasan V, Bhavan PS, Krishnakumar J. Bioremediation of textile dye effluent by Bacillus and Pseudomonas spp. International Journal of Science, Environment and Technology. . 2014;3:2215–2224.
    [Google الباحث العلمي]
  13. Marcucci M, Ciabatti I, Matteucci A, Vernaglione G. Membrane technologies applied to textile wastewater treatment. Annals of the New York Academy of Sciences. 2003;984:53–64.
    [Google الباحث العلمي]
  14. Meric S, Selcuk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater by Fenton’s, ozone and coagulation-flocculation processes. Water Research. 2005;39:1147–1153.
    [Google الباحث العلمي]
  15. Huang X, Bo X, Zhao Y, Gao B, Wang Y, Sun S, et al. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresource Technology. 2014;165:116–121.
    [Google الباحث العلمي]
  16. Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management. 2012;93:154–168.
    [Google الباحث العلمي]
  17. Teh CY, Budiman PM, Shak KPY, Wu TY. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research. 2016;55:4363–4389.
    [Google الباحث العلمي]
  18. Freitas TKFS, Almeida CA, Manholer DD, Geraldino HCL, de Souza MTF, Garcia JC. Review of utilization plant-based coagulants as alternatives to textile wastewater treatment. In: Muthu S (ed.) Detox fashion. Textile science and clothing technology. Singapore: Springer; 2018. p. 27–79.
    [Google الباحث العلمي]
  19. Liang CZ, Sun SP, Li FY, Ong YK, Chung TS. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science. 2014;469:306–315.
    [Google الباحث العلمي]
  20. Furlan FR, de Mel da Silva LG, Morgado AF, de Souza AAU, de Souz SMAGU. . Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resources, Conservation and Recycling. 2010;54:283–290.
    [Google الباحث العلمي]
  21. Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin. 2001;55:187–196.
    [Google الباحث العلمي]
  22. Rudén C. Acrylamide and cancer risk – Expert risk assessments and the public debate. Food and Chemical Toxicology. 2004;42:335–349.
    [Google الباحث العلمي]
  23. Yin CY. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry. 2010;45:1437–1444.
    [Google الباحث العلمي]
  24. Poleo ABS. Aluminium polymerization – A mechanism of acute toxicity of aqueous aluminium to fish. Aquatic Toxicology. 1995;31:347–356.
    [Google الباحث العلمي]
  25. Zhang K, Zhou Q. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions. Environmental Toxicology. 2005;20:179–187.
    [Google الباحث العلمي]
  26. Akpomie KG, Ojo FK, Akpomie TM, Abuh MG. Coagulation–flocculation process of Citropsis articulata seed powders as natural coagulant for textile effluent. Leonardo Electronic Journal of Practices and Technologies. 2018;32:271–284.
    [Google الباحث العلمي]
  27. Kristianto H, Kurniawan MA, Soetedjo JNM. Utilization of papaya seeds as natural coagulant for synthetic textile coloring agent wastewater treatment. International Journal on Advanced Science, Engineering and Information Technology. 2018;8:2071–2077.
    [Google الباحث العلمي]
  28. Chethana M, Sorokhaibam LG, Bhandari VM, Raja S, Ranade VV. Green approach to dye wastewater treatment using biocoagulants. ACS Sustainable Chemistry & Engineering. 2016;4:2495–2507.
    [Google الباحث العلمي]
  29. Sanghi R, Bhattacharya B, Singh V. Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions. Bioresource Technology. 2006;97:1259–1264.
    [Google الباحث العلمي]
  30. Patel H, Vashi RT. Removal of Congo red dye from its aqueous solution using natural coagulants. Journal of Saudi Chemical Society. 2012;16:131–136.
    [Google الباحث العلمي]
  31. Reck IM, Baptista ATA, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. Environmental Science and Pollution Research. 2020;27:12192–12201.
    [Google الباحث العلمي]
  32. Kumar R, Barakat MA. Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chemical Engineering Journal. 2013;226:377–383.
    [Google الباحث العلمي]
  33. Barka N, Ouzaouit K, Abdennouri M, Makhfouk ME. Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers. 2013;44:52–60.
    [Google الباحث العلمي]
  34. Dakiky M, Khamis M, Manassra A, Mer’eb M. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research. 2002;6:533–540.
    [Google الباحث العلمي]
  35. Miretzky P, Munoz C, Chavez AC. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresource Technology. 2008;99:1211–1217.
    [Google الباحث العلمي]
  36. Kazi T, Virupakshi A. Treatment of tannery wastewater using natural coagulants. International Journal of Innovative Research in Science, Engineering and Technology. 2013;2:4061–4068.
    [Google الباحث العلمي]
  37. Kannadasan DRT, Thirumarimurugan M, Sowmya KS, Karuppannan S, Vijayashanthi M. Dye industry effluent treatment using cactus (Opuntia) and water hyacinth (Eichhornia crassipes). Journal of Environmental Science, Toxicology and Food Technology. 2013;3:41–43.
    [Google الباحث العلمي]
  38. Bouaouine O, Baudu M, Khalil F, Chtioui H, Zaitan H. Comparative study between Moroccan cactus and chemicals coagulants for textile effluent treatment. Journal of Materials and Environmental Sciences. 2017;8:2687– 2693.
    [Google الباحث العلمي]
  39. Darvanjooghi MHK, Davoodi SM, Dursun AY, Ehsani MR, Karimpour I, Ameri E. Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb2+: Kinetic modeling and isotherm study. Adsorption Science & Technology. 2018;36:1112–1143.
    [Google الباحث العلمي]
  40. Massimi L, Giuliano A, Astolfi ML, Congedo R, Masotti A, Canepari S. Efficiency evaluation of food waste materials for the removal of metals and metalloids from complex multi-element solutions. Materials (Basel). 2018;11:334.
    [Google الباحث العلمي]
  41. Gulistan AS, Ibrahim TH, Khamis MI, ElSayed Y. Application of eggplant peels powder for the removal of oil from produced water. Desalination and Water Treatment. 2015;57:15724–15732.
    [Google الباحث العلمي]
  42. Abbas MN, Abbas FS, Ibrahim TA. Treatment of polluted aqueous solutions with different types of dyes by eggplant peels accessing to zero residue levels. International Journal of Science Engineering and Technology. 2018;4:525–533.
    [Google الباحث العلمي]
  43. Chethana M, Sorokhaibam LG, Bhandari MV, et al. Application of biocoagulant Acanthocereus tetragonus (Triangle cactus) in dye wastewater treatment. Journal of Environmental Research and Development. 2015;9:813.
    [Google الباحث العلمي]
  44. De Souza MTF, Almeida CA, Ambrosio E, Santos LB, de Souz Freitas TKF, Manholer DD, . et al. Extraction and use of Cereus peruvianus cactus mucilage in the treatment of textile effluents. Journal of the Taiwan Institute of Chemical Engineers. 2016;67:174–183.
    [Google الباحث العلمي]
  45. Vishali S, Karthikeyan R. Cactus opuntia (ficus-indica): An eco-friendly alternative coagulant in the treatment of paint effluent. Desalination and Water Treatment. 2015;56:1489–1497.
    [Google الباحث العلمي]
  46. Lozano-Rivas WA, Whiting KE, Gómez-Lahoz C, RodrÍguez-Maroto JM. Use of glycosides extracted from the fique (Furcraea sp.) in wastewater treatment for textile industry. International Journal of Environmental Science and Technology. 2016;13:1131–1136.
    [Google الباحث العلمي]
  47. Hemapriya G, Abinaya R, Dhinesh KS. Textile effluent treatment using Moringa oleifera. International Journal of Innovative Research and Development. 2015;4:385–390.
    [Google الباحث العلمي]
  48. Shilpa BS, Akanksha K, Girish P. Evaluation of cactus and hyacinth bean peels as natural coagulants. International Journal of Chemical and Environmental Engineering. 2012;3:1242–1246.
    [Google الباحث العلمي]
  49. Abhishek J, Sharma SK, Jyothi PM. Colour and COD removal in textile effluents using coagulation flocculation. International Journal of Innovative Research in Science, Engineering and Technology. 2016;6:10233–10239.
    [Google الباحث العلمي]
  50. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, . et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35:206–221.
    [Google الباحث العلمي]
  51. Sethu V, Selvarajoo A, Chee Wei L, Ganesan P, See Lim G, Xin Yua M. Opuntia cactus as a novel bio-coagulant for the treatment of Palm Oil Mill Effluent (POME). Progress in Energy and Environment. 2019;9:11–26.
    [Google الباحث العلمي]
  52. Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, . et al. Application of coagulation/flocculation in oily wastewater treatment: A review. Science of the Total Environment. 2021;765:142795.
    [Google الباحث العلمي]
  53. Adachi A, Radouane S, Faiçal EO, Moubchir T, Anouar H, Noureddine E, . et al. Cactus and holm oak acorn for efficient textile wastewater treatment by coagulation–flocculation process optimization using Box–Benhken design. Journal of Ecological Engineering. 2023;24:315–328.
    [Google الباحث العلمي]
  54. Government Decre. No. 2018-315 of March 26, 2018 setting the limit values for effluent discharges into the receiving environment. http://www.onas.nat.tn/Ar/image.php?id=964
    [Google الباحث العلمي]
  55. Fersi C, Gzara L, Dhahbi M. Flux decline study for textile wastewater treatment by membrane processes. Desalination. 2009;244:321–332.
    [Google الباحث العلمي]
  56. Khlifi R, Belbahri L, Woodward S, Ellouz M, Dhouib A, Sayadi S, . et al. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. Journal of Hazardous Materials. 2010;175:802–808.
    [Google الباحث العلمي]
  57. Ben Younes S, Ellouz M, Sayadi S. A comparative study of an industrial effluent treatment using enzymatic and alkaline adapted consortium assays. Journal of Chemical Technology and Biotechnology. 2012;88:563–571.
    [Google الباحث العلمي]
  58. Mnif I, Bouassida M, Ayed L, Ghribi D. Optimization of textile effluent bacterial treatment and improvement of the process efficiency through SPB1 biosurfactant addition. Water Science & Technology. 2023;87:1764-1778.
    [Google الباحث العلمي]
  59. Tishmack J, Jones D. Meeting the challenges of swine manure management. BioCycle. 2003;44:24.
    [Google الباحث العلمي]
  60. Elango G, Rathika G, Elango S. Physico-chemical parameters of textile dyeing effluent and its impacts with case study. International Journal of Research in Chemistry and Environment. 2017;7:17–24.
    [Google الباحث العلمي]
  61. Mohabansi NP, Tekade PV, Bawankar SV. Physico-chemical parameters of textile mill effluent, Hinganghat, Dist. Wardha (M.S.). Current World Environment. 2011;6:165–168.
    [Google الباحث العلمي]
  62. FEPA. Interim guidelines and standards for industrial effluent, gaseous emissions and noise limitations. Nigeria: Federal Environmental Protection Agency; 1991.
  63. Ajao AT, Adebayo GB, Yakubu SE. Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar agar in a bioreactor. Journal of Microbiology and Biotechnology Research. 2011;1:50–56.
    [Google الباحث العلمي]
  64. Manikandan P, Palanisamy PN, Baskar R, Sivakumar P, Sakthisharmila P. Physico chemical analysis of textile industrial effluents from Tirupur City, TN, India. International Journal of Advance Research in Science and Engineering. 2015;4:93–104.
    [Google الباحث العلمي]
  65. Panhwar A, Faryal K, Kandhro A, Qaisar S. Assessment of textile industrial effluent by wastewater quality standards. International Journal of Scientific & Engineering Research. 2019;10:1659–1663.
    [Google الباحث العلمي]
  66. Nourmoradi H, Rahmati Z, Javaheri M, Moradnejadi K, Noorimotlagh Z. Effect of praestol as a coagulant aid to improve coagulation–flocculation in dye containing wastewater. Global NEST Journal. 2015;18:38–46.
    [Google الباحث العلمي]
  67. Vijayaragharan G, Sivakumar T, Kumar AV. Application of plant based coagulants for waste water treatment. International Journal of Advanced Engineering Research and Studies. 2011;1:88–92.
    [Google الباحث العلمي]
  68. Dkhissi O, El Hakmaoui A, Souabi S, Chatoui M, Jada A, Akssira M. Treatment of vegetable oil refinery wastewater by coagulation–flocculation process using the cactus as a bio-flocculant. Journal of Materials and Environmental Sciences. 2018;9:18–25.
    [Google الباحث العلمي]
  69. Jinna A, Anu MR, Krishnan N, Sanal V, Das L. Comparative study of efficiency of local plants in water treatment. International Research Journal of Engineering and Technology. 2019;6:4046–4052.
    [Google الباحث العلمي]
  70. Deshmukh SO, Hedaoo MN. Wastewater treatment using bio-coagulant as cactus Opuntia ficus indica – A review. International Journal for Scientific Research & Development. 2018;6:711–717.
    [Google الباحث العلمي]
  71. Oladoja NA. Headway on natural polymeric coagulants in water and wastewater treatment operations. Journal of Water Process Engineering. 2015;6:174–192.
    [Google الباحث العلمي]
  72. Choudhary M, Ray MB, Neogi S. Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Separation and Purification Technology. 2019;209:714–724.
    [Google الباحث العلمي]
  73. Miller SM, Fugate EJ, Craver VO, Smith J.A., Zimmerma JB. Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environmental Science & Technology. 2008;42:4274–4279.
    [Google الباحث العلمي]
  74. Maurya S, Daverey A. Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech. 2018;8:77.
    [Google الباحث العلمي]
  75. Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. Environmental Technology. 2016;37:1829–1842.
    [Google الباحث العلمي]
  76. Mohamed M, Zeitoun A, Abdalla AE. Assessment of chemical composition and bioactive compounds in the peel, pulp and whole Egyptian eggplant flour. Journal of the Advances in Agricultural Researches. 2019;24:14-37.
    [Google الباحث العلمي]
  77. Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Analytical and Bioanalytical Chemistry. 2013;405:5937–5952.
    [Google الباحث العلمي]
  78. Shi Z, Hu J, Li Q, Zhang S, Liang Y, Zhang H. Graphene based solid phase extraction combined with ultra-high performance liquid chromatography–tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. Journal of Chromatography A. 2014;1355:219–227.
    [Google الباحث العلمي]
  79. Shan XM, Shen DH, Wang BS, Lu BB, Huang FY. Simultaneous determination of bisphenols and alkylphenols in water by solid phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Biomedical and Environmental Sciences. 2014;27:471–474.
    [Google الباحث العلمي]
  80. Au W, Pathak S, Colie CJ, Hsu TC. Cytogenetic toxicity of gentian violet and crystal violet on mammalian cells in vitro. Mutation Research. 1978;58:269–276.
    [Google الباحث العلمي]
  81. Azmi W, Sani RK, Banerjee UC. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology. 1998;22:185–191.
    [Google الباحث العلمي]
  82. Chen CC, Liao HJ, Cheng CY, Yen CY, Chung YC. Biodegradation of crystal violet by Pseudomonas putida. Biotechnology Letters. 2007;29:391–396.
    [Google الباحث العلمي]
  83. Schuetze A, Heberer T, Juergensen S. Occurrence of residues of the veterinary drug crystal (gentian) violet in wild eels caught downstream from municipal sewage treatment plants. Environmental Chemistry. 2008;5:194–199.
    [Google الباحث العلمي]
  84. Belpaire C, Reyns T, Geeraerts C, Van Loc J. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere. 2015;138:784–791.
    [Google الباحث العلمي]
  85. Parshetti GK, Parshetti SG, Telke AA, Kalyani DC, Doong RA, Govindwar SP. Biodegradation of crystal violet by Agrobacterium radiobacter. Journal of Environmental Sciences. 2011;23:1384–1393.
    [Google الباحث العلمي]
  86. Fan HJ, Huang ST, Chung WH, Jan JL, Lin WY, Chen CC. Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification. Journal of Hazardous Materials. 2009;171:1032–1044.
    [Google الباحث العلمي]
  87. Mani S, Bharagava RN. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. . Reviews of Environmental Contamination and Toxicology. 2016;237:71–104.
    [Google الباحث العلمي]
  88. Kudlak B, Wieczerzak M, Yotova G, Tsakovski S, Simeonov V, Namiesnik J. Environmental risk assessment of Polish wastewater treatment plant activity. Chemosphere. 2016;160:181–188.
    [Google الباحث العلمي]
  89. Tahrani L, Van Loco J, Anthonissen R, Verschaeve L, Ben Mansour H, Reyns T. Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Science & Technology. 2017;76:3000–3021.
    [Google الباحث العلمي]
/content/journals/10.5339/ajsr.2024.1
Loading
/content/journals/10.5339/ajsr.2024.1
Loading

جارٍ تحميل البيانات والوسائط...

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error