1887
Volume 5 (2024) Number 2
  • EISSN: 2708-0463

Abstract

تُوظَّف الجسيمات النانوية المغناطيسية في مجموعة متنوعة من الصناعات، مثل المحركات الكهربائية والأجهزة الإلكترونية، وتؤدي أيضًا دوراً مهماً في المجالات الطبية والكيميائية. وبناءً عليه، يستخدم الكوبالت في الكثير من التطبيقات، نظراً إلى استقراره في الطور الفيرومغناطيسي عند درجات الحرارة العالية. تعدّ طرق التحضير المختلفة لجسيمات الكوبالت النانوية فعالة جداً في الخواص المغناطيسية، حيث تتيح تقنيات التصنيع التحكمَ الدقيق في شكل الجسيمات المغناطيسية وحجمها. في هذا البحث، جرى تحضير جسيمات الكوبالت النانوية وأكسيد الكوبالت (CoO) بطريقة الاختزال الكيميائي لأيونات الكوبالت عن طريق العامل المختزل بوروهيدريد الصوديوم (NaBH)، لكونها بسيطة وسريعة في إنتاج الجسيمات النانوية. وقد شُخصت العيّنات المحضرة بواسطة ‎XRD‎ و‎FE-SEM‎ و‎EDS-Mapping‎ و‎VSM. وأُجريت عملية التلدين للمساحيق تحت غاز الأرغون والهيدروجين من أجل تحسين الخواص المغناطيسية. وقد تشكّلت المواد بتراكيب بلورية مختلفة مع وجود شوائب، وجرى قياس السلوك المغناطيسي للعينات في درجة حرارة الغرفة، حيث ازدادت قيم التشبع المغناطيسي على حساب قيم المجال القسري التي انخفضت نتيجة تبخّر الأكسجين، إضافةً إلى زيادة حجم الجسيمات وارتفاع نسبة النقاوة. وتشير النتائج إلى الحصول على مجال قسري عالٍ قبل التلدين يصل إلى O 490 ومغنطة تشبّع بمقدار emu/g 86.38 بعد تأثير عملية التلدين. وختاماً، أُجريت محاكاة لحلقة الهسترة الفيرومغناطيسية التي تصف السلوك المغناطيسي لجسيمات الكوبالت من خلال تطبيق نموذج جايلز-أثيرتون.

Magnetic nanoparticles are employed in a variety of industries such as electric motors and electronic devices and play a crucial role in the medical and chemical fields. Accordingly, cobalt is used in many applications due to its stability in the ferromagnetic phase at high temperatures. Different preparation methods for cobalt nanoparticles are very effective in magnetic properties, as manufacturing techniques allow precise control of the shape and size of magnetic particles. In this paper, cobalt nanoparticles and cobalt oxide (CoO) were prepared by chemical reduction method of cobalt ions by reducing agent NaBH, being simple and fast in producing nanoparticles. The prepared samples were characterized by XRD, FE-SEM, EDS-Mapping, VSM. Powder annealing was carried out under the pump of gas mixed with argon and hydrogen in order to improve the magnetic properties. The material was formed with different crystal structures with impurities, the magnetic behavior of the samples was measured at room temperature, where the magnetic saturation values increased at the expense of the coercive field values that decreased as a result of oxygen evaporation in addition to increasing the particle size and high purity. The results indicated obtaining a high coercive field before annealing up to 490 O and magnetization of saturation of 86.38 emu/g after annealing effect. In conclusion, a simulation of a ferromagnetic hysteresis loop describing the magnetic behavior of cobalt particles was made by applying the Jiles–Atherton (JA) model.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.7
2024-10-31
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/2/AJSR.2024.issue2.7.html?itemId=/content/journals/10.5339/ajsr.2024.7&mimeType=html&fmt=ahah

References

  1. Zhao Y-W, Zheng RK, Zhang XX, Xiao JQ, . A simple method to prepare uniform Co nanoparticles. IEEE Transactions on Magnetics. 2003; 39:(5, Part 2):2764–2766.
    [Google Scholar]
  2. Dzidziguri EL, Sidorova EN, Inkar M, Yudin AG, Kostitsyna E V., Ozherelkov DY, et al.. Cobalt nanoparticles synthesis by cobalt nitrate reduction. Materials Research Express. 2019; 6:(10):105081.
    [Google Scholar]
  3. Al-Senani GM, Deraz NM, Abd-Elkader OH, . Magnetic and characterization studies of CoO/Co3O4 nanocomposite. Processes. 2020; 8:(7):844.
    [Google Scholar]
  4. Arora N, Jagirdar BR, . Carbonization of solvent and capping agent based enhancement in the stabilization of cobalt nanoparticles and their magnetic study. Journal of Materials Chemistry. 2012; 22:(38):20671–20679.
    [Google Scholar]
  5. Salavati-Niasari M, Davar F, . Synthesis of cobalt and cobalt oxide nanoparticles and their magnetic properties. International Journal of Nanoscience. 2009; 8:(3):273–276. https://www.worldscientific.com/doi/abs/10.1142/S0219581X09006195
    [Google Scholar]
  6. Zola AS, Ribeiro RU, Bueno JMC, Zanchet D, Arroyo PA, . Cobalt nanoparticles prepared by three different methods. Journal of Experimental Nanoscience. 2014; 9:(4):398–405.
    [Google Scholar]
  7. Singh N, Ansari JR, Pal M, Thanh NTK, Le T, Datta A, . Synthesis and magnetic properties of stable cobalt nanoparticles decorated reduced graphene oxide sheets in the aqueous medium. Journal of Materials Science: Materials in Electronics. 2020; 31:(18):15108–15117.
    [Google Scholar]
  8. Khan S, Hossain MK, . Classification and properties of nanoparticles. Nanoparticle-based polymer composites. Elsevier; 2022. p. 15–54.
    [Google Scholar]
  9. Xue G, Bai H, Li T, Ren Z, Liu X, Lu C, . Numerical solving method for Jiles-Atherton model and influence analysis of the initial magnetic field on hysteresis. Mathematics. 2022; 10:(23):4431.
    [Google Scholar]
  10. Caltun OF, . The fitting of magnetic hysteresis curves using the Jiles-Atherton model(II). Journal of Optoelectronics and Advanced Materials. 2010; 12:(4):885–891. https://www.researchgate.net/publication/274071865
    [Google Scholar]
  11. Cullity BD, . Elements of X-ray diffraction. Addison-Wesley Publishing; 1956.
    [Google Scholar]
  12. Sarkar A, Eggert B, Witte R, Lill J, Velasco L, Wang Q, et al, . Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: Unraveling the suppression of configuration entropy in high entropy oxides. Acta Materialia. 2022;226:117581.
    [Google Scholar]
  13. Abdullah NA, Ali B, Jabbar H, . Study the effect of Tio2 nanoparticles in multilayers of photoelectrode prepared by ball milling technique on the performance of dye sensitized solar cells (Dsscs). Journal of Physics: Conference Series. 2021;1818:012069.
    [Google Scholar]
  14. Saleh Al-Khazali SM, Al-Salman HS, Hmood A, . Low cost flexible ultraviolet photodetector based on ZnO nanorods prepared using chemical bath deposition. Materials Letters. 2020 Oct 15;:277:128177.
    [Google Scholar]
  15. Ali ZK, Mahdi MA, . Preparation of Silicon nanowires photocathode for photoelectrochemical water splitting. Iraqi Journal of Physics. 2022; 20:(4):66–81.
    [Google Scholar]
  16. Abed AAS, Kasim SJ, Abbas AF, . Optical and structural properties of CdS quantum dots synthesized using (MW-CBD) technique. Iraqi Journal of Nanotechnology. 2020;(1):44–52.
    [Google Scholar]
  17. Mohammed KA, Ziadan KM, Al-Kabbi AS, Saxena KK, Zabibah RS, Alrubaie AJ, et al. Optical, morphological, electrical properties and white light photoresponse of CdSe nanoparticles. Advances in Materials and Processing Technologies. 2022; 8:(sup4):2289–2298.
    [Google Scholar]
  18. Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ, Wang YG, . Self-assembly and magnetic properties of cobalt nanoparticles. Applied Physics Letters. 2003 Jun 30; 82:(26):4729–4731.
    [Google Scholar]
  19. Mahdavi H, Sajedi M, Shahalizade T, Heidari AA, . Preparation and application of catalytic polymeric membranes based on PVDF/cobalt nanoparticles supported on MWCNTs. Polymer Bulletin. 2020;77:4489–4505.
    [Google Scholar]
  20. Fantechi E, Innocenti C, Albino M, Lottini E, Sangregorio C, . Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. Journal of Magnetism and Magnetic Materials. 2015;380:365–371.
    [Google Scholar]
  21. Mohapatra J, Xing M, Liu JP, . Inductive thermal effect of ferrite magnetic nanoparticles. Materials (Basel). 2019; 12:(19):3208.
    [Google Scholar]
  22. Kalil F, Buschman A, . High-density digital recording. NASA Reference Publication. 1985 Sep.
    [Google Scholar]
/content/journals/10.5339/ajsr.2024.7
Loading
/content/journals/10.5339/ajsr.2024.7
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error