1887
Volume 2022, Issue 1
  • E-ISSN: 2220-2749

ملخص

Cysteine cathepsins are defined as lysosomal enzymes that are members of the papain family. Cysteine cathepsins (Cts) prevalently exist in whole organisms, varying from prokaryotes to mammals, and possess greatly conserved cysteine residues in their active sites. Cts are engaged in the digestion of cellular proteins, activation of zymogens, and remodeling of the extracellular matrix (ECM). Host cells are entered by SARS-CoV-2 via endocytosis. Cathepsin L and phosphatidylinositol 3-phosphate 5-kinase are crucial in endocytosis by cleaving the spike protein, which permits viral membrane fusion with the endosomal membrane and succeeds in the release of the viral genome to the host cell. Therefore, inhibition of cathepsin L may be advantageous in terms of decreasing infection caused by SARS-CoV-2. Coordinate inhibition of multiple Cts and lysosomal function by different drugs and biological agents might be of value for some purposes, such as a parasite or viral infections and antineoplastic applications. Zn2+ deficiency or dysregulation leads to exaggerated cysteine cathepsin activity, increasing the autoimmune/inflammatory response. For this purpose, Zn2+ metal can be safely combined with a drug that increases the anti-proteolytic effect of endogenous Zn2+, lowering the excessive activity of some CysCts. Biguanide derivative complexes with Zn2+ have been found to be promising inhibitors of CysCts protease reactions. Molecular docking studies of cathepsin L inhibited by the metformin-Zn+2 complex have been performed, showing two strong key interactions (Cys-25&His-163) and an extra H-bond with Asp-163 compared to cocrystallized Zn+2 (PDB ID 4axl).

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/avi.2022.2
٢٠٢١-١١-٢٢
٢٠٢٤-٠٧-١٧
Loading full text...

Full text loading...

/deliver/fulltext/avi/2022/1/avi.2022.2.html?itemId=/content/journals/10.5339/avi.2022.2&mimeType=html&fmt=ahah

References

  1. Rudzińska, M., et al.,. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. 2019. 20:(14): p. 3602.
    [Google الباحث العلمي]
  2. Madadlou, A.J.E.J.o.P., Food proteins are a potential resource for mining cathepsin L inhibitory drugs to combat SARS-CoV-2. 2020. 885: p. 173499.
    [Google الباحث العلمي]
  3. Pu, J., et al., Mechanisms and functions of lysosome positioning. J Cell Sci, 2016. 129:(23): p. 4329-4339.
    [Google الباحث العلمي]
  4. Fonović, M. and B. Turk, Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta, 2014. 1840:(8): p. 2560-70.
    [Google الباحث العلمي]
  5. Reiser, J., B. Adair, and T. Reinheckel, Specialized roles for cysteine cathepsins in health and disease. J Clin Invest, 2010. 120:(10): p. 3421-31.
    [Google الباحث العلمي]
  6. Sudhan, D.R. and D.W. Siemann, Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis, 2013. 30:(7): p. 891-902.
    [Google الباحث العلمي]
  7. Chen, S., et al., Cathepsins in digestive cancers. Oncotarget, 2017. 8:(25): p. 41690-41700.
    [Google الباحث العلمي]
  8. Turk, V., B. Turk, and D. Turk, Lysosomal cysteine proteases: facts and opportunities. Embo j, 2001. 20:(17): p. 4629-33.
    [Google الباحث العلمي]
  9. Brömme, D. and S. Wilson, Role of cysteine cathepsins in extracellular proteolysis, in Extracellular matrix degradation. 2011, Springer. p. 23-51.
    [Google الباحث العلمي]
  10. Verma, S., R. Dixit, and K.C. Pandey, Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. 2016. 7:(107).
    [Google الباحث العلمي]
  11. Hämälistö, S. and M. Jäättelä, Lysosomes in cancer—living on the edge (of the cell). Current Opinion in Cell Biology, 2016. 39: p. 69-76.
    [Google الباحث العلمي]
  12. Sui, H., et al., Overexpression of Cathepsin L is associated with chemoresistance and invasion of epithelial ovarian cancer. Oncotarget, 2016. 7:(29): p. 45995-46001.
    [Google الباحث العلمي]
  13. Zheng, X., et al., Senescence-initiated reversal of drug resistance: specific role of cathepsin L. Cancer Res, 2004. 64:(5): p. 1773-80.
    [Google الباحث العلمي]
  14. Han, M.L., et al., Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol Sin, 2016. 37:(12): p. 1606-1622.
    [Google الباحث العلمي]
  15. Zheng, X., et al., Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative mechanism. Am J Physiol Cell Physiol, 2009. 296:(1): p. C65-74.
    [Google الباحث العلمي]
  16. Lindner, H.A., et al., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. 2005. 79:(24): p. 15199-15208.
    [Google الباحث العلمي]
  17. Schornberg, K., et al., Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. 2006. 80:(8): p. 4174-4178.
    [Google الباحث العلمي]
  18. Ou, X., et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. 2020. 11:(1): p. 1-12.
    [Google الباحث العلمي]
  19. Buzon, M.J., et al., Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers. Journal of virology, 2011. 85:(18): p. 9646-9650.
    [Google الباحث العلمي]
  20. Guicciardi, M.E., et al., Cathepsin B knockout mice are resistant to tumor necrosis factor-α-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. 2001. 159:(6): p. 2045-2054.
    [Google الباحث العلمي]
  21. Hsing, L.C., et al., Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. 2010. 34:(2): p. 96-104.
    [Google الباحث العلمي]
  22. Lockwood, T.D.J.B., Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn 2+ to inhibit cysteinyl cathepsins: review and implications. 2019. 32:(4): p. 575-593.
    [Google الباحث العلمي]
  23. Perry, D.K., et al., Zinc is a potent inhibitor of the apoptotic protease, caspase-3: a novel target for zinc in the inhibition of apoptosis. 1997. 272:(30): p. 18530-18533.
    [Google الباحث العلمي]
  24. Eron, S.J., et al., Multiple mechanisms of zinc-mediated inhibition for the apoptotic caspases-3,-6,-7, and-8. 2018. 13:(5): p. 1279-1290.
    [Google الباحث العلمي]
  25. Parvez, M.K. and A.A.J.V.r. Khan, Molecular modeling and analysis of hepatitis E virus (HEV) papain-like cysteine protease. 2014. 179: p. 220-224.
    [Google الباحث العلمي]
  26. Nakajima, E., et al., Activation of the mitochondrial caspase pathway and subsequent calpain activation in monkey RPE cells cultured under zinc depletion. 2014. 28:(1): p. 85-92.
    [Google الباحث العلمي]
  27. Chouduri, A.U., et al., High affinity Zn2+ inhibitory site (s) for the trypsin-like peptidase of the 20S proteasome. 2008. 477:(1): p. 113-120.
    [Google الباحث العلمي]
  28. Kiss, P., et al., Zn2+-induced reversible dissociation of subunit Rpn10/p54 of the Drosophila 26 S proteasome. The Biochemical journal, 2005. 391:(Pt 2): p. 301-310.
    [Google الباحث العلمي]
  29. Sweeney, D., M.L. Raymer, and T.D.J.B.p. Lockwood, Antidiabetic and antimalarial biguanide drugs are metal-interactive antiproteolytic agents. 2003. 66:(4): p. 663-677.
    [Google الباحث العلمي]
  30. Bonaventura, P., et al., Zinc and its role in immunity and inflammation. 2015. 14:(4): p. 277-285.
    [Google الباحث العلمي]
  31. Bailey, C.J.J.D., Metformin: historical overview. 2017. 60:(9): p. 1566-1576.
    [Google الباحث العلمي]
  32. Pavan, R., S. Jain, and A. Kumar, Properties and therapeutic application of bromelain: a review. Biotechnology research international, 2012. 2012:.
    [Google الباحث العلمي]
  33. Sano, E., et al., Cysteine protease inhibitors in various milk preparations and its importance as a food. Food research international, 2005. 38:(4): p. 427-433.
    [Google الباحث العلمي]
  34. Bikle, D., Nonclassic Actions of Vitamin D. The Journal of Clinical Endocrinology & Metabolism, 2009. 94:(1): p. 26-34.
    [Google الباحث العلمي]
  35. Swami, S., et al., Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray. Breast cancer research and treatment, 2003. 80:(1): p. 49-62.
    [Google الباحث العلمي]
  36. Álvarez-Díaz, S., et al., Vitamin D: Proteases, protease inhibitors and cancer. Cell Cycle, 2010. 9:(1): p. 32-37.
    [Google الباحث العلمي]
  37. Mycroft-West, C., et al., Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. BioRxiv, 2020.
    [Google الباحث العلمي]
  38. Kim, S.Y., et al., Glycosaminoglycan binding motif at S1/S2 proteolytic cleavage site on spike glycoprotein may facilitate novel coronavirus (SARS-CoV-2) host cell entry. BioRxiv, 2020.
    [Google الباحث العلمي]
  39. Huang, I.-C., et al., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. Journal of Biological Chemistry, 2006. 281:(6): p. 3198-3203.
    [Google الباحث العلمي]
  40. Wang, D., et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 2020. 323:(11): p. 1061-1069.
    [Google الباحث العلمي]
  41. Higgins, W.J., et al., Heparin enhances serpin inhibition of the cysteine protease cathepsin L. Journal of Biological Chemistry, 2010. 285:(6): p. 3722-3729.
    [Google الباحث العلمي]
  42. Gomes, C.P., et al., Cathepsin L in COVID-19: from pharmacological evidences to genetics. Frontiers in cellular and infection microbiology, 2020. 10.
    [Google الباحث العلمي]
  43. Hoffmann, M., et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 2020. 181:(2): p. 271-280. e8.
    [Google الباحث العلمي]
  44. Lehrer, S. and P.H. Rheinstein, Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. in vivo, 2020. 34:(5): p. 3023-3026.
    [Google الباحث العلمي]
  45. Glowacka, I., et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology, 2011. 85:(9): p. 4122-4134.
    [Google الباحث العلمي]
  46. Caly, L., et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research, 2020. 178: p. 104787.
    [Google الباحث العلمي]
  47. Rowland, R.R., et al., Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. Journal of virology, 2005. 79:(17): p. 11507-11512.
    [Google الباحث العلمي]
  48. Tay, M., et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral research, 2013. 99:(3): p. 301-306.
    [Google الباحث العلمي]
  49. Wagstaff, K.M., et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 2012. 443:(3): p. 851-856.
    [Google الباحث العلمي]
  50. Yang, S.N., et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral research, 2020. 177: p. 104760.
    [Google الباحث العلمي]
  51. Chen, J.-M., et al., Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. Journal of Biological Chemistry, 1997. 272:(12): p. 8090-8098.
    [Google الباحث العلمي]
  52. Liu, C., et al., Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer research, 2003. 63:(11): p. 2957-2964.
    [Google الباحث العلمي]
  53. Papaspyridonos, M., et al., Novel candidate genes in unstable areas of human atherosclerotic plaques. Arteriosclerosis, thrombosis, and vascular biology, 2006. 26:(8): p. 1837-1844.
    [Google الباحث العلمي]
  54. Shirahama-Noda, K., et al., Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. Journal of Biological Chemistry, 2003. 278:(35): p. 33194-33199.
    [Google الباحث العلمي]
  55. Abisi, S., et al., Effect of statins on proteolytic activity in the wall of abdominal aortic aneurysms. British journal of surgery, 2008. 95:(3): p. 333-337.
    [Google الباحث العلمي]
  56. Wang, Z.h., et al., Pleiotropic effects of atorvastatin on monocytes in atherosclerotic patients. The Journal of Clinical Pharmacology, 2010. 50:(3): p. 311-319.
    [Google الباحث العلمي]
  57. Moheimani, F., et al., Inhibition of lysosomal function in macrophages incubated with elevated glucose concentrations: a potential contributory factor in diabetes-associated atherosclerosis. Atherosclerosis, 2012. 223:(1): p. 144-151.
    [Google الباحث العلمي]
  58. Nguyen-Ba, G., et al., Modulatory effect of dexamethasone on ornithine decarboxylase activity and gene Expression: a possible post-transcriptional regulation by a neutral metalloprotease. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 1994. 12:(2): p. 121-128.
    [Google الباحث العلمي]
  59. Group, R.C., Dexamethasone in hospitalized patients with Covid-19—preliminary report. New England Journal of Medicine, 2020.
    [Google الباحث العلمي]
  60. Lucas, J.M., et al., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer discovery, 2014. 4:(11): p. 1310-1325.
    [Google الباحث العلمي]
  61. Zhou, N., et al., Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). Journal of Biological Chemistry, 2016. 291:(17): p. 9218-9232.
    [Google الباحث العلمي]
  62. de Sousa LR, Wu H, Nebo L, Fernandes JB, da Silva MF, Kiefer W, Schirmeister T, Vieira PC. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp Parasitol. 2015 Sep;156:42-8. doi: 10.1016/j.exppara.2015.05.016. Epub 2015 Jun 1. PMID: 26044356.
    [Google الباحث العلمي]
  63. Frlan R, Gobec S(2006) Inhibitors of cathepsin B. Curr Med Chem 13:2309–2327. https://doi.org/10.2174/09298 67067 77935 122
  64. Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:(3): 155–166. https://doi.org/10.1038/s41584-020-0372-x (Epub 2020/02/09).
  65. Sainz RM, Mayo JC, Reiter RJ, Antolin I, Esteban MM, Rodriquez C. Melatonin regulates glucocorticoid receptor: an answer to its antiapoptotic action in thymus. Faseb J 1999; 13:1547–1557.
    [Google الباحث العلمي]
  66. Zeman M, Buyse J, Lamosova D, Herichova I, Decuypere E. Role of melatonin in the control of growth and growth hormone secretion in poultry. Domest Anim Endocrinol 1999; 17:199–209.
    [Google الباحث العلمي]
  67. Luboshitzky R, Shenorr Z, Shochat T, Herer P, Lavie P. Melatonin administered in the afternoon decreases next-day luteinizing hormone levels in men. Lack of antagonism by fl umazenil. J Mol Neurosci 1999;12:69–75.
    [Google الباحث العلمي]
  68. Maestroni GJM, Conti A, Covacci V. Melatonin-induced immunoopioids: fundamentals and clinical perspectives. Adv Pineal. Res 1994; 7:73–81.
    [Google الباحث العلمي]
  69. Van Dyke RW, Ervin LL, Lewis MR, Wang X. Effect of cholera toxin on rat liver lysosome acidification. Biochem Biophys Res. Commun 2000; 3: 717–721.
    [Google الباحث العلمي]
  70. Witek, B., Ochwanowska, E., Kolataj, A., Slewa, A. & Stanislawska, I. Effect of melatonin administration on activities of some lysosomal enzymes in the mouse. Neuroendocrinol. Lett. 22, 181–185 (2001).
    [Google الباحث العلمي]
  71. Miller B, Friedman AJ, Choi H, et al. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod. 2014; 77:(1): 92-99. doi:10.1021/np400727r.
    [Google الباحث العلمي]
  72. Morrissey, M.T., Hartley, P.S. and An, H. 1995. Proteolysis in pacific whiting and effect of surimi processing. Journal of Aquatic Food Product Technology 4:(4): 5-18.
    [Google الباحث العلمي]
  73. Hu, Y., Morioka, K. and Itoh, Y. 2007. Existence of cathepsin L and its characterization in Red Bulleye Surimi. Pakistan Journal of Biological Science 10:(1): 78-83.
    [Google الباحث العلمي]
  74. Ustadi, Kim, K.Y. and Kim, S.M. 2005. Purification and identification of a protease inhibitor from glassfish (Liparis tanakai) Eggs. Journal of Agricultural and Food Chemistry, 53:7667-7672.
    [Google الباحث العلمي]
  75. Olonen, A. 2004. High molecular weight cysteine proteinase inhibitors in Atlantic Salmon and other fish species. Helsinki, Finland. University of Helsinki, Ph.D dissertation.
    [Google الباحث العلمي]
  76. Li, D.K., Lin, H. and Kim, S.M. 2008. Purification and characterization of a cysteine protease inhibitor from chum salmon (Oncorhynchus keta) Plasma. Journal of Agricultural and Food Chemistry 56:106–111.
    [Google الباحث العلمي]
  77. Choi, J.H., Park, P.J. and Kim, S.K. 2002. Purification and characterization of a trypsin inhibitor from the egg of skipjack tuna Katsuwonus pelamis. Fisheries Science 68:1367-1373.
    [Google الباحث العلمي]
  78. Sentandreu, M.A., Coulis, G. and Ouali, A. 2002. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science and Technology 13:(12): 400-421.
    [Google الباحث العلمي]
  79. Huang IC, Bosch BJ, Li F, et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006; 281: 3198-203.
    [Google الباحث العلمي]
  80. Gerber A, Welte T, Ansorge S, Buhling F, Expression of cathepsin B and L in human lung epithelial cells is regulated by cytokines, Adv Exp Med Biol. 2000;477:287-92.
    [Google الباحث العلمي]
  81. Lockwood T. Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn2+ to inhibit cysteinyl cathepsins: review and implications. BioMetals. 2019; 32:(4): 575-593. doi:10.1007/s10534-019-00197-1
    [Google الباحث العلمي]
/content/journals/10.5339/avi.2022.2
Loading
/content/journals/10.5339/avi.2022.2
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Research Article
الموضوعات الرئيسية cathepsin LCOVID-19metforminmoelcular dockingSARS-CoV-2 and viral fusion

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error