1887
Volume 2013, Issue 1
  • E-ISSN: 2223-506X

ملخص

In this paper an inhomogeneous beam with a damping distributed along the length is considered. The beam is clamped at both ends and is assumed to vibrate in a transverse direction only. The total energy of the system at any time is estimated. Finally, an explicit form of exponential energy decay is obtained. Hence, the uniform stabilization of the system is achieved.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/connect.2013.21
٢٠١٣-٠٨-٠١
٢٠٢٥-٠١-١٥
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.21.html?itemId=/content/journals/10.5339/connect.2013.21&mimeType=html&fmt=ahah

References

  1. Love AEH. A Treatise on the Mathematical Theory of Elasticity. New York, NY: Dover Publications 1927;
    [Google الباحث العلمي]
  2. Timoshenko SP. History of Strength of Materials. New York, NY: Dover Publications 1953;
    [Google الباحث العلمي]
  3. Benaroya H. Mechanical Vibration. Englewood Cliffs, NJ: Prentice Hall 1998;
    [Google الباحث العلمي]
  4. Inman D. Engineering Vibration. Englewood Cliffs, NJ: Prentice Hall 1994;
    [Google الباحث العلمي]
  5. Meirovitch L. Analytical Methods in Vibrations. New York, NY: Macmillan Publications 1967;
    [Google الباحث العلمي]
  6. Meirovitch L. Elements of Vibration Analysis. New York, NY: McGraw-Hill Book Company 1986;
    [Google الباحث العلمي]
  7. Meirovitch L. Principles and Techniques of Vibrations. Englewood Cliffs, NJ: Prentice Hall 1997;
    [Google الباحث العلمي]
  8. Rao SS. Mechanical Vibrations. 3rd ed. Reading, MA: Addison-Wesley Publishing Company 1995;
    [Google الباحث العلمي]
  9. Thomson W. Theory of Vibration with Applications. 4th ed. Englewood Cliffs, NJ: Prentice Hall 1993;
    [Google الباحث العلمي]
  10. Lions JL. Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 1988; 30:1:168
    [Google الباحث العلمي]
  11. Ammari K, Tuesnak M. Stabilization of Bernoulli-Euler beams by means of a point feedback force. SIAM J Control Optim. 2000; 39:4:11601181
    [Google الباحث العلمي]
  12. Liu K, Liu Z. Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J Control Optim. 1998; 36:3:10861098
    [Google الباحث العلمي]
  13. Nagaya K. Method of control of flexible beams subjected to forced vibrations by use of inertia force cancellations. J Sound Vibr. 1995; 184:2:185194
    [Google الباحث العلمي]
  14. Rebarber R. Exponential stability of coupled beams with dissipative joints: a frequency domain approach. SIAM J Control Optim. 1995; 33:1:128
    [Google الباحث العلمي]
  15. Chen G, Delfour MC, Krall AM, Payre G. Modeling, stabilization and control of serially connected beams. SIAM J Control Optim. 1987; 25:3:526546
    [Google الباحث العلمي]
  16. Chen G. Energy decay estimates and exact boundary-value controllability for the wave equation in a bounded domain. J Math Pures Appl. 1979; 9:58:249273
    [Google الباحث العلمي]
  17. Chen G. A note on the boundary stabilization of the wave equation. SIAM J Control Optim. 1981; 19:1:106113
    [Google الباحث العلمي]
  18. Lagnese JE. Note on boundary stabilization of wave equations. SIAM J Control Optim. 1988; 26:5:12501256
    [Google الباحث العلمي]
  19. Lagnese J. Decay of solutions of wave equations in a bounded region with boundary dissipation. J Diff Eqns. 1983; 50:2:163182
    [Google الباحث العلمي]
  20. Komornik V. Rapid boundary stabilization of the wave equation. SIAM J Control Optim. 1991; 29:1:197208
    [Google الباحث العلمي]
  21. Komornik V, Zuazua E. A direct method for boundary stabilization of the wave equation. J Math Pures Appl. 1990; 69:1:3354
    [Google الباحث العلمي]
  22. Nandi PK, Gorain GC, Kar S. Uniform exponential stabilization for flexural vibrations of a solar panel. Appl Math. 2011; 02:06:661665
    [Google الباحث العلمي]
  23. Mitrinović DS, Pečarić JE, Fink AM. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, The Netherlands: Kluwer 1991;
    [Google الباحث العلمي]
  24. Gorain GC. Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation. Appl Math Comput. 2006; 177:1:235242
    [Google الباحث العلمي]
  25. Gorain GC, Bose SK. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structures. J Optim Theory Appl. 1998; 99:2:423442
    [Google الباحث العلمي]
/content/journals/10.5339/connect.2013.21
Loading
  • نوع المستند: Research Article
الموضوعات الرئيسية energy decay estimateinhomogeneous beamtransverse vibrations and uniform stabilization
هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error