1887
6 - Al-Bayan University Scientific Conference
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Nano vesicles, one of several existing nanoscale drug delivery systems, offer extremely promising new ways to develop treatments for degenerative diseases, cancer, and inflammation. The primary goals in developing nanocarriers are to control particle size, surface characteristics, and drug release to achieve specific objectives. Therefore, it is crucial to accurately characterize nanocarriers to effectively regulate their intended behavior both in clinical settings and in the body. Nanocarriers are characterized by their size, structure, and charged state, which are determined by sophisticated microscopic methods such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Electron microscopy is used to evaluate the surface morphology and size of particles, while dynamic light scattering and photon correlation spectroscopy are used to estimate particle size and size distribution. Colloidal stability is determined by zeta potential, which is an indirect measure of surface charge, and differential scanning calorimetry is used to characterize particles and drug interactions.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2024.absc.16
2024-10-23
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2024/6/jemtac.2024.absc.16.html?itemId=/content/journals/10.5339/jemtac.2024.absc.16&mimeType=html&fmt=ahah

References

  1. Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, et al. Lipid-based nanovesicular drug delivery systems. Nanomaterials. 2021 Dec 14; 11:(12):3391. doi: 10.3390/nano11123391.
    [Google Scholar]
  2. Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int J Nanomed. 2021 Feb 1716:1313–30. doi: 10.2147/IJN.S289443.
    [Google Scholar]
  3. Amoretti M, Amsler C, Bonomi G, Bouchta A, Bowe P, Carraro C et al. Production and detection of cold antihydrogen atoms. 2002 Oct 3; 419:(6906):456–9. doi: 10.1038/nature01096.
    [Google Scholar]
  4. Kurakula M, Chen L, Tiwari AK, Srinivas NR, Dash RP, Panizzi P et al. Recent advances in lipid-based nanovesicular delivery systems for melanoma therapy. Crit Rev Ther Drug Carrier Syst. 2021; 38:(4):1–38. doi: 10.1615/CritRevTherDrugCarrierSyst.2021034903.
    [Google Scholar]
  5. Ali Ashoor J, Mohsin JM, Mohsin HM, Mahde BW, Gareeb MM. Permeability enhancement of methotrexate transdermal gel using eucalyptus oil, peppermint oil and olive oil (Conference Paper)#. Iraqi J Pharm Sci. 2022 Jan 11; 30:(Suppl.):16–21. doi: 10.31351/vol30issSuppl.pp16-21 .
    [Google Scholar]
  6. Al-Edhari GH, Al Gawhar FJ. Study the effect of formulation variables on preparation of nisoldipine loaded nano bilosomes. Iraqi J Pharm Sci. 2023 Nov. 4 [cited 2024 Sep. 21]; 32:(Suppl.):271–82. doi: 10.31351/vol32issSuppl.pp271-282 .
    [Google Scholar]
  7. Ali SK, Al-Akkam EJ. Bilosomes as soft nanovesicular carriers for ropinirole hydrochloride: Preparation and in- vitro characterization. Iraqi J Pharm Sci. 2023 Nov 3; 32:(Suppl.):177–87. doi: 10.31351/vol32issSuppl.pp177-187 .
    [Google Scholar]
  8. Lakshmi NM, Yalavarthi PR, Vadlamudi HC, Thanniru J, Yaga G, KH. Cubosome as targeted drug delivery systems – A biopharmaceutical approach. Curr Drug Discov Technol. 2014 Nov 28; 11:(3):181–8. doi: 10.2174/1570163811666140505125923 .
    [Google Scholar]
  9. Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery—A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023 Apr 7; 11:(4):1114. doi: 10.3390/biomedicines11041114 .
    [Google Scholar]
  10. Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces. 2020 Nov; 195:111262. doi: 10.1016/j.colsurfb.2020.111262 .
    [Google Scholar]
  11. Barriga HMG, Holme MN, Stevens MM. Cubosomes: The next generation of smart lipid nanoparticles? Angew Chem Int Ed. 2019 Mar 4; 58:(10):2958–78. doi: 10.1002/anie.201804067 .
    [Google Scholar]
  12. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: Composition, preparation, and drug delivery applications. J. Adv. Biomed. Pharm. Sci. 2020;3:1–9. doi: 10.21608/jabps.2019.16887.1057 .
    [Google Scholar]
  13. Garg M, Goyal A, Kumari S. An update on the recent advances in cubosome: A novel drug delivery system. Curr Drug Metab. 2021; 22:(6):441–50. doi: 10.2174/1389200221666210105121532 .
    [Google Scholar]
  14. Sen R, Gupta R, Singh S, Mantry S, Das S. A review on cubosome and virosome: The novel drug delivery system. UJPSR. 2017; 3:(1):24–33. doi: 10.21276/UJPSR.2017.03.01.99 .
    [Google Scholar]
  15. Mansour M, Kamel AO, Mansour S, Mortada ND. Novel polyglycerol-dioleate based cubosomal dispersion with tailored physical characteristics for controlled delivery of ondansetron. Colloids Surf B Biointerfaces. 2017 Aug 1;156:44–54. doi: 10.1016/j.colsurfb.2017.04.052 .
    [Google Scholar]
  16. Kumar P, Singh SK, Handa V, Kathuria H. Oleic acid nanovesicles of minoxidil for enhanced follicular delivery. Medicines (Basel). 2018 Sep 14; 5:(3):103. doi: 10.3390/medicines5030103 .
    [Google Scholar]
  17. Bagmar NA, Hatwar PR, Bakal RL. A review on targeted drug delivery system. World J Pharm Res. 2023 Oct 19; 12:(19):288–98. doi: 1020959/wjpr202319-30070 .
    [Google Scholar]
  18. Luke PM, Joseph T. Ufasomes: Rising technology for delivery of drugs. Int J Med Pharm Sci. 2021 Jan 1; 11:(11):1–7. doi: 10.31782/IJMPS.2021.111101 .
    [Google Scholar]
  19. Nair AJ, Aswathi K, George A, Athira PP, Nair SC. Ufasome: A potential phospholipid carrier as a novel pharmaceutical formulation. Int Res J Pharm. 2014 Apr 19; 5:(4):250–3. doi: 10.7897/2230-8407.050453 .
    [Google Scholar]
  20. Arundhasree, Rajalakshmi R, Aiswarya R, Kumar AR, Kumar SS, Nair SC. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int J Appl Pharm. 2021 Mar 7; 13:(2):76–83. doi:10.22159/ijap.2021v13i2.39526 .
    [Google Scholar]
  21. Fareed NY, Kassab HJ. Effect of formulation variables on the properties of a new vesicular system of an anthraquinone derivative. J Adv Pharm Educ Res. 2023; 13:(4):25–9. doi: 10.51847/JDGOLCgVXm .
    [Google Scholar]
  22. Patel DM, Patel CN, Jani RH. Ufasomes: A vesicular drug delivery. Syst Rev Pharm. 2011 Jul–Dec; 2:(2):72–8. doi: 10.4103/0975-8453.86290 .
    [Google Scholar]
  23. Patel H. A vesicular drug delivery for futuristic drug delivery applications: Ufasomes. Ind J Pharm Biol Res. 2022 Apr; 10:(4):1–7.
    [Google Scholar]
  24. Nangare S, Dugam S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: A review. Futur J Pharm Sci. 2020;6:123. doi: 10.1186/s43094-020-00145-8 .
    [Google Scholar]
  25. El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Dapsone-loaded invasomes as a potential treatment of acne: Preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech. 2018 Jul 1; 19:(5):2174–84. doi: 10.1208/s12249-018-1025-0 .
    [Google Scholar]
  26. Salih OS, Al-Akkam EJ. Pharmacokinetic parameters of ondansetron in rats after oral solution and transdermal invasomes gel: A comparison study. J Adv Pharm Educ Res. 2023; 13:(1):116–21. doi: 10.51847/HS5a27EI6o .
    [Google Scholar]
  27. Afreen U, Sailaja AK. Overall review on invasomes. Res J Nanosci Eng. 2019 Jan 1; 3:(4):5–9. doi: 10.22259/2637-5591.0304002 .
    [Google Scholar]
  28. Salih OS, Al-akkam EJ. Invasomes as a novel delivery carrier for transdermal delivery: Review article. Medicon Pharm Sci. 2022 Apr; 30; 2:(3):11–16.
    [Google Scholar]
  29. Kaur L, Kaur P, Khan M. Liposome as a drug carrier – A review. IJRPC Int J Res Pharm Chem. 2013; 3:(1):121–8. Available from: https://www.ijrpc.com/files/20-342.pdf .
    [Google Scholar]
  30. Li T, Nowell CJ, Cipolla D, Rades T, Boyd BJ. Direct comparison of standard transmission electron microscopy and cryogenic-TEM in imaging nanocrystals inside liposomes. Mol Pharm. 2019 Apr 1; 16:(4):1775–81. doi: 10.1021/acs.molpharmaceut.8b01308 .
    [Google Scholar]
  31. Nasr M, Saber S, Bazeed AY, Ramadan HA, Ebada A, Ciorba AL, et al. Advantages of cubosomal formulation for gatifloxacin delivery in the treatment of bacterial keratitis: In vitro and in vivo approach using clinical isolate of methicillin-resistant Staphylococcus aureus. Materials (Basel). 2022 May 8; 15:(9):3374. doi: 10.3390/ma15093374 .
    [Google Scholar]
  32. Miere (Groza) F, Fritea L, Cavalu S, Ioana Vicaş S. Formulation, characterization, and advantages of using liposomes in multiple therapies. Pharmacophore. 2020 Jan; 11:(3):1–12.
    [Google Scholar]
  33. Prasanthi D, Lakshmi PK. Iontophoretic transdermal delivery of finasteride in vesicular invasomal carriers. Pharm Nanotechnol. 2013 Apr 1; 1:(2):136–50. doi: 10.2174/2211738511301020009 .
    [Google Scholar]
  34. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol. 2012 Dec 1; 1:(2):147–68. doi: 10.1166/jcsb.2012.1020 .
    [Google Scholar]
  35. Nasr M, Almawash S, Al Saqr A, Bazeed AY, Saber S, Elagamy HI. Bioavailability and antidiabetic activity of gliclazide-loaded cubosomal nanoparticles. Pharmaceuticals (Basel). 2021 Aug 9; 14:(8):786. doi: 10.3390/ph14080786 .
    [Google Scholar]
  36. Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021 Jan 5;192:113642. doi: 10.1016/j.jpba.2020.113642 .
    [Google Scholar]
  37. Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019 Dec;4 7:(1):524–39. doi: 10.1080/21691401.2018.1561457 .
    [Google Scholar]
  38. Alkawak RSY, Rajab NA. Lornoxicam-loaded cubosomes: – Preparation and in vitro characterization. Iraqi J Pharm Sci. 2022 Jun 17; 31:(1):144–53. doi: 10.31351/vol31iss1pp144-153 .
    [Google Scholar]
  39. Kassab HJ Alkufi HK, Hussein LS. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J Adv Pharm Technol Res. 2023 Apr–Jun; 14:(2):119–124. doi: 10.4103/japtr.japtr_603_22 .
    [Google Scholar]
  40. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019 Aug; 27:(7):742–761. doi: 10.1080/1061186X.2018.1527337 .
    [Google Scholar]
/content/journals/10.5339/jemtac.2024.absc.16
Loading
/content/journals/10.5339/jemtac.2024.absc.16
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error