- Home
- Conference Proceedings
- Qatar Foundation Annual Research Conference Proceedings
- Conference Proceeding
Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1
- Conference date: 22-23 Mar 2016
- Location: Qatar National Convention Center (QNCC), Doha, Qatar
- Volume number: 2016
- Published: 21 March 2016
41 - 60 of 656 results
-
-
Low-Temperature CO Oxidation Over CuO-TiO2 Nanocatalysts
Among the diverse catalytic processes, the heterogeneous catalytic CO oxidation is an important reaction for removal of small amounts of poisoning CO in fuel cell applications and environmental remediation. Therefore, there is a great need to develop highly active and stable nanocatalysts for catalytic CO oxidation at low temperature. Plasmonic nanocatalysts supported on reducible metal oxide such as CeO2 and TiO2 have been known for their superior catalytic activity at very low temperature but they are expensive and could suffer from particle agglomeration and sintering at high operating temperature (Veith, Lupini et al. 2009). Transition metals supported on reducible metal oxides are good substituents catalysts because of their low cost and wide-use along with activities per unit surface area similar to those of noble metal catalysts. They been shown to possess high oxygen release capacity at high range of temperature and have been shown as good candidate materials for oxygen storage and to provide oxygen for combustion and oxidation reaction at high temperature. (Royer and Duprez 2011; Hedayati, Azad et al. 2012; Song, Liu et al. 2013). In particular, supported CuO nanostructures have received a great deal of attention as non-expensive and non-plasmonic catalysts for oxidation reaction. (Caputo, Lisi et al. 2007; Hornes, Hungria et al. 2009; Royer and Duprez 2011; In, Vaughn et al. 2012; Komarneni, Shan et al. 2012; Chen, Xu et al. 2015; Fang, Xing et al. 2015; Kim and Liu 2015) In this study, we have developed a highly stable and active CuO-TiO2 nanocatalyst that can catalyze the CO oxidation at low temperature window between 80–200°C. The CuO-TiO2 nanocatalysts were prepared by the hydrothermal synthesis of TiO2 nanotubes followed by the deposition precipitation of CuO nanoparticles in alkaline conditions. We first prepared the TiO2 nanotube support by the hydrothermal treatment of TiO2 spherical particles in strong alkaline solution at 140°C. We then synthesized a series of CuO-TiO2 catalysts by deposition precipitation at constant pH, with sodium carbonate as the alkali precipitating agent and different loading ratios of Cu to TiO2 between 2% and 30 wt.%. We studied the morphological and structural properties of prepared nanocatalysts using standard physical techniques including SEM, EDX, TEM, TGA, XRD and XPS in order to understand the structure-property relationship and to optimize their catalytic activity. We carried out multiple catalytic CO oxidation cycles in a continuous flow fixed-bed reactor at low temperature range (25–300°C) and studied the catalytic activity of the different CuO-TiO2 nanocatalysts and their stability under stream. We also studied the effect of shape of the TiO2 support and the effect of the mole ratio of CuO loading on the CO conversion rates. The catalytic activity of the single counterparts of CuO and TiO2 were measured for comparison. The experimental results revealed that the CuO nanoparticles supported on TiO2 nanostructures exhibited higher activity and enhanced CO conversion rates at lower temperature, compared to un-supported CuO nanoparticles. The increased activity at lower activation temperature is probably due to the increased degree of dispersion of the active CuO phase on the TiO2 support as concluded from the EDX mapping study. Moreover, the results showed that the correlation between the catalytic activity of CuO-TiO2 nanocatalysts and both the shape and crystalline phase of the TiO2 support. The CuO supported on TiO2 nanotubes demonstarted enhanced CO conversion rates at lower temperature compared to that supported on TiO2 nanospheres. In all samples the CuO-TiO2 nanocatalysts calcined at 400°C exhibited the anatase phase of the TiO2 nanotubes support and demonstrated higher activity. The results also showed that increasing the Cu to Ti ratio could lower the activation temperature needed for CO to CO2 conversion probably due to the enhanced synergetic effect of the two mixed metal oxides. In addition, the XPS study of the CuO-TiO2 composite oxide structure indicated high degree of oxygen deficiency in CuO-TiO2 nanocatalysts with higher Cu to TiO2 loading and this could result in CO oxidation rates. The prepared CuO-TiO2 nanocatalyst demonstrated a high stability for CO oxidation for test periods of up to 5 h under stream at 200°C. The prepared CuO-TiO2 nanocatalysts could have potential applications in hydrogen purification in fuel cell systems and for CO removal in carbon dioxide lasers and in air quality industries.
References
Caputo, T., L. Lisi, et al. (2007). “Kinetics of the Preferential Oxidation of CO over CuO/CeO2 Catalysts in H2-Rich Gases.” Industrial & Engineering Chemistry Research 46(21): 6793–6800.
Chen, G., Q. Xu, et al. (2015). “Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.” ACS Applied Materials & Interfaces 7(42): 23538–23544.
Fang, B., Y. Xing, et al. (2015). “Hierarchical CuO-TiO2 Hollow Microspheres for Highly Efficient Photodriven Reduction of CO2 to CH4.” ACS Sustainable Chemistry & Engineering 3(10): 2381–2388.
Hedayati, A., A.-M. Azad, et al. (2012). “Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion.” Industrial & Engineering Chemistry Research 51(39): 12796–12806.
Hornes, A., A. B. Hungria, et al. (2009). “Inverse CeO2/CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream.” Journal of the American Chemical Society 132(1): 34–35.
In, S.-I., D. D. Vaughn, et al. (2012). “Hybrid CuO-TiO2 − xNx Hollow Nanocubes for Photocatalytic Conversion of CO2 into Methane under Solar Irradiation.” Angewandte Chemie International Edition 51(16): 3915–3918.
Kim, H. Y. and P. Liu (2015). “Complex Catalytic Behaviors of CuTiOx Mixed-Oxide during CO Oxidation.” The Journal of Physical Chemistry C 119(40): 22985–22991.
Komarneni, M., J. Shan, et al. (2012). “Adsorption Dynamics of CO on Silica Supported CuOx Clusters: Utilizing Electron Beam Lithography To Study Methanol Synthesis Model Systems.” The Journal of Physical Chemistry C 116(9): 5792–5801.
Royer, S. and D. Duprez (2011). “Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides.” ChemCatChem 3(1): 24–65.
Song, Q., W. Liu, et al. (2013). “A high performance oxygen storage material for chemical looping processes with CO2 capture.” Energy & Environmental Science 6(1): 288–298.
Veith, G. M., A. R. Lupini, et al. (2009). “Thermal stability and catalytic activity of gold nanoparticles supported on silica.” Journal of Catalysis 262(1): 92–101.
-
-
-
Atmospheric Corrosion Behavior of Al 6xxx Alloys in Qatar State
More LessAl 6000 series [Al-Mg-Si-Cu] are widely used in oil field for frames, tanks, pipelines and machinery applications. They showed a relatively high corrosion resistant, thermal and electrical conductivity and low cost. Establishing a materials map (Corrosion Atlas) for different region in Qatar. Al 6063 and Al 6082 are part of this map. Studying the forms of corrosion for the two Al alloys at different sites. Studying the corrosion rate, pit aspect ratio and pit density of the Al alloys after different times of exposure at different atmospheric condition. Many authors have been studied the corrosion behavior of aluminum alloys indoor significantly than the outdoor studies. However, the indoor corrosion studies seem to be markedly ignored numbers of air pollutants practically sulfur and chloride contaminations. In addition, weather exposure designs (outdoor tests) of aluminum and its alloys have been performed in different atmosphere all over the world by many countries. The aim of this article is to investigate the atmospheric corrosion behavior of Aluminum alloy Al-6063 after 6 months of exposure at seven different sites in Qatar which are representing different environments (Desert, industrial, coastal and marine) by visual observation with low power optical analysis for counting the pit depth and pit density for each site. In addition, electrochemical techniques were applied on the collected specimens to show the effect of the formed oxide layer on the corrosion behavior. SEM was used to study the susceptibility of studied alloys to intergrainular corrosion and the influence of sulfur and chloride compounds in intergrainular corrosion. The results were put in comparison with indoor test in 3.5% NaCl + 1%HCl mixture using SEM and Accelerated electrochemical techniques.
-
-
-
An Assessment of the Radiological Impact of Oil Extraction on Groundwater in the State of Qatar
More LessThe current study is a laboratory investigation to estimate the levels of activity concentrations of Naturally Occurring Radioactive Materials (NORM) in groundwater in the Dukhan area in the State of Qatar. The primary radionuclide associated with clear gamma-ray decay signatures of concern in NORM wastes is 226Ra (from the 238U decay series) and its decay progenies 214Pb and 214Bi. Previous studies which were conducted on radioactivity concentration in soil in the State of Qatar have shown elevated levels of enhanced radioactivity in the area, North-West Dukhan, known for its oil fields. With the original aim of investigating the correlation between the underlying geological background and any measured elevation in the activity concentration of 226Ra, an anomalously high value of 226Ra activity had been observed for a number of measured samples in our earlier work, in this particular area and in particular. The weighted mean value of the activity concentrations of 226Ra in one of the samples was found to be around approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. Our first study reported a value of about 201.9 ± 1.5Stat. ± 13Syst. Bq/kg for 226Ra in one sample,1 while our further and focused (smaller grids) investigation in the latest work determined a measured value for 226Ra of about 342.00 ± 1.9Stat. ± 25Syst. Bq/kg in a sample taken from the same locality.2 This is significantly higher than all the other investigated soil samples in the current and previous work and was likely to be in a heterogeneous distribution. This was found to be attributed to the weak correlation between the levels of activity concentration of 226Ra and the type of soil in this area implying that the increased 226Ra concentration arises from discharging co-produced water directly to land surface in this area. A preliminary study on the level of natural radionuclides in eight groundwater samples for this specific area using five cutting edge techniques in the national and collaborating laboratories will be presented. About half of those samples were collected from Dukhan farms where the groundwater was used for irrigation. Measurements for 222Rn concentrations in groundwater will be conducted using Rad-7 and a Liquid Scintillator Counter (LSC) at the Physics Department, Faculty of Sciences, Princess Nora Bint Abdul Rahman University, KSA. The activity concentration of 210Po and 210Pb will also be analyzed using alpha spectrometry and LSC at the National Physical Laboratory, UK. Gamma measurements using Low-level HPGe Detector will focus on activity concentration levels of 228, 226Ra and their decay progenies 214Bi, 214Pb, 228Ac, 212Pb and 208Tl and they will be conducted at the Radiation Measurements Laboratory, Ministry of Environment, Qatar. A general chemical analysis using ICP-MS will be conducted at the laboratory of Qatar Environment and Energy Research Institute (QEERI) in order to support the radiological analysis in the project. The results of this study will be essential to further clarify the reasons behind this elevation in this area. In addition, it will help in characterizing the areas of concern and explore the beneficial use and the suitable and feasible treatment options of the co-produced water and positively contributing to the water security target.
References
1. Al-Sulaiti, H., Regan P. H., Bradley D. A., Malain D., et al., A preliminary report on the determination of natural radioactivity levels of the State of Qatar using high-resolution gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (NIM-A), 2010. 619(1–3): p. 427–431.
2. Huda Al-Sulaiti, Tabassum Nasir, K.S. AlMugren, et al., Determination of the Natural Radioactivity Levels in North West of Dukhan, Qatar Using High-Resolution Gamma-ray Spectrometry, Proceedings of the 8th International Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA-8) Applied Radiation and Isotopes, July 2012, Volume 70, Issue 7, p. 1344–1350.
-
-
-
Refinement of Olefins via the Addition of Ethylene to a Periodic Two-Dimensional Nickel-Based Material
More LessObtaining valuable materials from petrochemical resources is a critical area for Qatar industry. The separation and purification of light olefins from oil and natural gas is an essential but costly step in this process. The high energetic cost of cryogenic distillation, the current “state-of-the-art” separation technique, promotes the search for new technologies with alternative methods to extract olefins by, for example, the use of transition metal materials to reversibly complex olefins [1]. Few copper and silver compounds are known to improve the energetic efficiency, but are unusable by practical challenges, such as poisoning and deactivation [2]. Our group is interested in nickel bis(dithiolene) and its derivatives due to their ability to coordinate and release alkenes in a controlled, reversible, and selective way [3]. We have explored the use of nickel dithiolenes [4] and related molecular complexes [5] for olefin purification. However, homogeneous catalysts have practical issues that can be managed by developing related heterogeneous catalysts, with major industrial advantages associated to handling the catalyst, the separation process and the use of solvents [6]. A possibility would be the use of the active metal center (NiS4) as a motif in a non-soluble polymeric material. Kambe and coworkers recently synthesized a two-dimensional sheet with the appropriate metal centers [7] Among other studies of this new π-conjugated material [8], its ability to coordinate ethylene was explored by density functional theory (DFT) means [9]. In this presentation, we extend our work in molecular complexes to this analogous two-dimensional extended system using periodic boundary conditions (PBC) [10]. We use the screened-hybrid density functional HSE06 to include the exact exchange in periodic calculations, avoiding the known over-stabilization of barriers from pure DFT methods [11, 12]. PBC values were complemented with calculations on a series of cluster models. We analyzed two different cluster sizes: a small cluster formed by 5 nickel atoms and a large cluster containing 12 nickel atoms, mimicking one of the macro-hexagonal holes in the sheet. In addition to the cluster and periodic models for the extended material, we also included a molecular analog with CN groups. All methods provide a similar picture of the system, with the same preferred pathway. Our study includes binding motifs based on the molecular system but unnoticed in previous 2D extended studies (such as the coordination along the sulfur-nickel bond). Also, we include additional products that are only available in the periodic system, such as coordination between multiple nickel atoms. Pathways to form those coordination products were calculated both directly and through intermediates (such as a distorted geometry or coordination including Ni atom). Our calculations suggest that the interligand adduct is both the kinetic and thermodynamic product, formed through sulfur-nickel intermediate. These findings are different from those described by Zhou, because our study is more complete, and includes the nickel-sulfur coordination pathway. On the other hand, the nickel-mediated mechanism prediction agrees with the results for molecular catalysts. Evaluation of higher alkene coverages on the surface were used to estimate the molecular efficiency of the material. The attachment of a single ethylene by each unit cell (a reaction ratio of 1:3, Et:Ni) has been expanded with the simulation of different levels of coverage, including the efficiency of the molecular reaction (ratio 1:1) and improved efficiency (like ratio 2:1). The fast-growing number of combinations were simplified by using only the most stable coordination motif. Our results suggest that coordination is favored up to one molecule per Ni atom. Compared with the molecular complex, the 2D material shows similar reaction barriers and energies, as well as the same molecular efficiency. On the other side, weight efficiency is improved and the extended nature of the material eases practical issues. In conclusion, we believe that this material is a very promising potential catalyst for olefin purification.
Acknowledgements
This publication was made possible by NPRP grant No. 05-318-1-063 from the Qatar National Research Fund (a member of Qatar Foundation).
References
[1] Eldridge, R.B. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).
[2] (a) Blytas, G.C. In Li, N.N.; Calo, J.M. (eds) “Separation and Purification Technology” Dekker: New York, 19–58 (1992). (b) Suzuki, T.; Nobel, R.D.; Koval, C.A. Inorg. Chem. 36,136–140 (1997).
(c) Kim, H.S.; Kim, H.; Ahn, B.S.; Ryu, J.H.; Kang, Y.S. Chem. Comm. 14, 1261–1262 (2000).
[3] Wang, K.; Stiefel, E.I. Science 291, 06–109 (2001).
[4] (a) Fan, Y.; Hall, M.B. J. Am. Chem. Soc. 124, 12076–12077 (2002). (b) Dang, L.; Yang, X.; Zhou, J.; Brothers, E.N., Hall, M.B. J. Phys. Chem. A 116, 476–482 (2012). (c) Dang, L.; Shibl, M.F.; Yang, X.; Alak, A.; Harrison, D.J.; Fekl, U.; Brothers, E.N.; Hall, M.B. J. Am. Chem. Soc. 134, 4481–4484 (2012). (d) Dang, L.; Shibl, M.F.; Yang, X.; Harrison, D.J.; Alak, A.; Lough, A.J.; Fekl, U.; Brothers, E.N.; Hall, M.B. Inorg. Chem. 52, 3711 (2013). (e) Shibl, M.F.; Dang, L.; Raju, R.K.; Hall, M.B.; Brothers, E.N. Int. J. Quant. Chem. 113, 621–1625 (2012).
[5] (a) Li, H.; Brothers, E.N.; Hall, M.B. Inorg. Chem. 53, 9679–9691 (2014). (b) Dang, L.; Ni, S.F.; Hall, M.B.; Brothers, E.N. Inorg. Chem. 53, 9692–9702 (2014).
[6] Cole-Hamilton, D.J.; Tooze, R.P. (eds) “Catalyst Separation, Recovery and Recycling: Chemistry and Process Design (Catalysis by Metal Complexes)” Springer (2006).
[7] Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.H.; Sasaki, S.; Kim, J.; Nakazato, J.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 135, 2462–2465 (2013).
[8] (a) Wang, Z.F.; Su, N.; Liu, F. Nano Lett. 13, 2842–2845 (2013). (b) Shojaei, F.; Hahn, J.R. Chem. Mater. 26, 2967–3974 (2014).
[9] Tang, Q.; Zhou, Z. J. Phys. Chem. C 117, 14125–14129 (2013).
[10] Moncho, S.; Brothers, E.N.; Hall, M.B. J. Mol. Model. In press (2015).
[11] (a) Heyd, J.; Scuseria, G.E.; Ernzerhof, M. J. Chem. Phys. 118, 8207–8215 (2003), erratum: 124, 219906). (b) Heyd, J.; Scuseria, G.E. J. Chem. Phys. 120, 7274–7280 (2004). (c) Heyd, J.; Scuseria, G.E. J. Chem. Phys. 121, 1187–1192 (2004).
[12] (a) Sniatynsky, R.; Janesko, B.G.; El-Mellouhi, F.; Brothers, E.N. J. Phys. Chem. C 116, 26396–26404 (2012). (b) Determan, J.J.; Moncho, S.; Brothers, E.N.; Janesko, B.G. J. Phys. Chem. C 118, 15693–15704 (2014).
-
-
-
A Prospective Implementation of Plant-Associated Microbes for a Sustainable Agriculture in Qatar
Authors: Fatima Al-Neami and Osman RadwanAbstract Background: The plant growth and production rely on the supporting favorable environmental conditions throughout its growing stages. In harsh environmental conditions such as in Qatar, agricultural growth is limited by water availability, salinity and drought, leading to low yield. In soil, there are different kinds of microbiota including fungi, bacteria, actinomycetes, algae as well as various types of plant species. Fungi are important components of the soil microbiota. For example, soil-borne fungi cause a significant yield loss for many vegetable and fruit crops in Qatar including tomatoes, cucumbers, legumes, limes, strawberries and others. Several recent studies have demonstrated that the adaptation of plants to severe environmental conditions is attributed to genetic abilities of their associated microbes. For example, all plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi reflecting fitness benefits conferred by fungi that contribute to or are responsible for plant adaptation to stress. In Qatar, there are many plant species that can survive under adverse abiotic conditions of salinity and drought rendering them as rich resources for structuring their associated microbes. Objectives: The aims of this study were to: (i) investigate the effect of different ecosystems on the structure and distribution of soil-borne fungi; (ii) inspect the ability of plant-associated microbes to tolerate harsh environmental conditions; and (iii) examine the effectiveness of isolated fungi as potential biological control agents. The ultimate goal of this study is to improve the sustainable agriculture in Qatar through the implementation of plant-associated microbes for biological control of important diseases and enhance plant tolerance to abiotic stress. Materials and Methods-Isolation of plant associated microbes: Samples from plant rhizosphere and soil were collected from four different plant species grown under different ecosystems in Qatar. Qatar University Farm (Al-Zubara Area, Qatar) exemplifies the agricultural ecosystem; in addition to six private farms represent different ecosystems. Four plant species were considered in this study namely Launae capitata, Lycium shawii, Ziziphus lotus and Zygophyllum qatarense (Tetraena qatarense). Samples from plant rhizosphere and soil were collected in January. Soil-borne fungi were isolated from the rhizosphere and soil using direct plate method. About 0.5 g of homogenized soil sample was plated on melted potato dextrose agar supplemented with Rose Bengal. Plates were incubated at 25°C for 3–7 days and colonies with different morphological characters were isolated and purified. Fungal isolates were identified morphologically using light microscopy. DNA was extracted using QIAGEN kit for molecular analysis. Effect of abiotic stress on the growth of Trichoderma spp.: different concentrations of sodium chloride (NaCl) were used to induce salinity stress. NaCl concentrations include 0 (control), 10 mM, 50 mM, 100 mM, 250 mM, 500 mM, 1 M, 1.25 M, 1.5 M, 1.75 M, 2 M, 2.25 M, 2.5 M, 2.75 M and 3 M. Fifty ml of potato dextrose broth medium, with different salt level, was inoculated with five mm disc of Trichoderma spp. Poly Ethylene Glycol (PEG) was used to induce drought effect on Trichoderma spp. Different percentages of PEG were performed including 0% (control), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. In 100 ml conical flask; 50 ml of PDB medium with different percentages of PEG was inoculated with five mm disc of Trichoderma spp. The antagonistic effect of the fungal isolates was tested using the direct opposition method. Antagonistic test was performed between Trichoderma spp. which has an effective biocontrol activity towards many soil-borne pathogenic fungi and Ceratocystis radicicola (Thielaviopsis paradoxa), which causes many diseases in date palm trees. The test was performed in dual culture on PDA medium. Five mm disc of each fungus was placed at peripheral end (five cm between each other) of Petri plate. The plates were incubated at 25°C for 7 days. Three replicates were considered. Results: Tthirty-nine of fungal genera were isolated from the plant rhizosphere and soil. Results showed that the most dominant genus was Aspergillus niger (48.5%) followed by Rhizopus spp. (26.8%). Other fungal communities were also detected such as Aspergillus vesicolory, Aspergillus sydowii, Aspergillus wentii, Fusarium oxysporum, Penicillia oxalicum, and Rhizoctonia solani. Results also showed that Aspergillus terreus is associated with rhizosphere of plant species growing in harsh conditions. However, plants grown under agricultural conditions showed a biodiversity in their associated-fungal species, the most common fungi are Fusarium sp. and Trichoderma sp., which were isolated from rhizosphere of Launaea capitata and Ziziphus lotus grown in harsh conditions. In vitro, Trichoderma spp. was able to grow in high concentrations of salt (2 M) and PEG (80%) reflecting a high adaptation of plant associated microbes to both salinity and drought stresses. Results from the antagonistic test showed that Trichoderma spp. caused a remarkable growth inhibition of C. radicicola the causal agent of many diseases in date palm trees. Conclusion: Data obtained from the current study will lead to the initiation of a Qatari fungal culture collection, which will help conserve the biodiversity and could be essential for future studies. Additionally, plant-associated microbes isolated from different ecosystems can further be used for biological control of important plant diseases and enhancing plant tolerance to abiotic stress. Altogether, results from the current study suggest a prospective implementation of plant-associated microbes for a sustainable agriculture in Qatar.
-
-
-
Roads to Makkah: Ambient Air Quality and Personal Exposure Assessment During Ritual of Hajj
More LessHajj, an annual pilgrimage of Islam, draws millions of pilgrims from more than 200 countries for religious rituals in Mecca, Saudi Arabia. The Mecca population during Hajj grows equal to a mega city and traffic activities in Mecca remain busiest during Hajj. Traffic emissions are the principal local source of air pollutants. Air quality in Mecca and surrounding holy sites was investigated during the 2012 (1433 H) and 2013 (1434 H) Hajj. This is the first detailed study to elucidate the exposure to air pollutants among pilgrims. It is also the very first VOCs emission study in the region (GCC) which assesses VOCs including Alkanes, Alkenes, Alkynes, Aromatics, Alkyl Nitrates, cycloalkanes/alkenes, sulfur species, and halocarbons in air sample. Spatial and temporal variations in total suspended particulate (TSP), PM10, PM7, PM2.5, PM1, ozone (O3), and black carbon (BC) levels along the route were also recorded using portable monitors. Strongly elevated levels of carbon monoxide and volatile organic compounds (VOCs) were measured. The most pilgrim routes had on average exceeded the World Health Organization (WHO) recommended threshold for PM10 and PM2.5 during Hajj, especially in the tunnels of Mecca, and are a concern for human health. High volume of traffic, construction work, re-suspension of particles, and geographical conditions (arid regions) are identified as major causes of health significant pollutants. The pilgrim's longer trip duration lead to their highest whole trip exposure to air pollutants, which indicate that they are subject to higher health risk. Better understanding of air pollution exposure and their determinants in the environments will contribute to the development of more appropriate exposure reductive strategies and have significant public health meanings.
-
-
-
Mixed Solid Municipal Waste-Based Biochar for Soil Fertility and Greenhouse Gas Mitigation
Authors: Rishipal Bansode, Priscilla Randolph, Osman Hassan, Djaafar Rehrah and Mohamed AhmednaMunicipal solid waste management is one of the major challenges facing Qatar with more than 2.5 million tons of municipal solid waste each year, a very high waste generation rate in a country with small land mass. Solid waste in Qatar consists mostly of organic materials (60%) with the remaining made up of recyclables, such as glass, metals and plastics. Qatar's ambitious development strategy targets environmental sustainability and invests in research on key grand challenges including water/food security. Fortunately both can be addressed through value-added conversion of solid organic waste into biochars. Solid municipal wastes such as newspaper, cardboard, woodchips and plant residues from landscaping can be converted to biochar for mitigation of their environmental impact and value-addition. On the other hand, agricultural soils have significant deficiencies in a range of essential trace elements and macronutrients and often exhibit low water holding capacity. These deficiencies impact both the yield and the nutritional quality of edible crops with direct consequences cost-effectiveness and human health. Fortunately, these challenges can be advantageously addressed by production of biochars from organic sources such as mixed organic solid waste from municipalities as well as agricultural and landscaping operations. The landfill and composting of these solid municipal wastes generate greenhouse gases that contribute to climate changes. Biochars prepared from solid municipal wastes can greatly benefit the carbon content of soil. Additionally, biochar may interact with fertilizers to deliver indirect improvements in plant growth and reduce the emission of greenhouse gases from native organic matter. Biochars can also be custom-designed to increase/decrease native soil pH to bring it closer to the optimum range for microbial and plant growth. These applications give solid organic municipal wastes promising potential as precursors for value-added biochars with varied physicochemical characteristics allowing them to be used not only as an alternative to bio-waste management and greenhouse gas mitigation but also as means to improve depleted soil. We hypothesize that soil deficiencies in soil can be remedied by the application of biochars that are custom-designed to possess the right physicochemical characteristics suitable to improve soil fertility. The aim of this study was to: (1) produce biochars from mixed solid organic waste for use in soil quality enhancement, (2) investigate the effect of biochar addition to soil on plant germination and growth and (3) evaluate the potential of biochars in mitigating green house gas (GHGs) emissions. Select solid organic municipal wastes (newspaper, cardboard, woodchips and landscaping residues) were used as a precursor for biochar preparation. A blend of 25% of each precursor was used and pyrolyzed at 700°C for 2 hrs under N2 gas at a flow rate of 0.1 mL min− 1 using a Lindberg box programmable furnace equipped with an air-tight retort. Soil fertility parameters such as pH, water retention and macro and micronutrients were analyzed. Fine sandy clay loam soil from the Ap horizon (0-15 cm deep) was amended with biochar at the rate of 2% (w/w). To test the germination rate in soils, with and without biochars (produced from municipal solid waste precursors of 25% blend of four types of waste materials), hybrid savoyed spinach seeds were sown in germination trays (3 seeds/well) for two weeks in climate controlled greenhouse settings. Trays were watered twice daily to maintain moisture level between 10 and 12 percent. The percentage of seed germination was calculated and the plant growth measured as dry biomass. Incubation experiments were conducted to measure GHGs production in sealed glass vials containing soil with and without biochar or raw materials from which this biochar was produced. Greenhouse gases emission differential between the biochars and their corresponding raw feedstocks in treated soil was used as indicator of GHGs emission by biochars during the incubation period Biochars prepared from blends produced at 700°C pyrolysis temperatures and used at 2% application rate to soil showed higher pH (6.8), increased water retention, and high K and NO3-N content. The net effect of these changes in soil properties positively impacted both seed germination and biomass yield of the plants (up to two folds in soil amended with biochars). At the same time, conversion of solid organic wastes into biochar enabled 14% reduction in GHGs emission compared to the solid waste precursors, as indicated by lower CO2 emission. Biochar amendment in soil significantly reduced the CO2 emission (14%), which would otherwise have increased greenhouse gas due to solid waste decomposition in soil. This differential is mainly due to respiration controlled by microbes. Soil amended with biochar closely followed the trend of soil treatment signifying no additional contribution to CO2 efflux. The increase in CO2 efflux seen in feedstock-amended soil can be attributed to the decomposition of feedstock during the time incubation period. In summary, biochars from mixed solid organic wastes at 2% carbon to soil ratio improved seed germination, increased plant biomass yield, and reduced GHGs emission compared to precursors. To reach the maximum benefits, pyrolysis conditions and feedstock selection are critical steps to produce biochars with desirable properties for specific soil amendment. From the present study, it is clear that constituents of municipal solid organic wastes hold promising potential as inexpensive precursor for value-added biochar manufacturing with varied and customizable physicochemical characteristics that would be beneficial in soil amendments while alleviating the problem of solid waste disposal and contributing to mitigation of GHGs. Further studies are need needed to confirm the reported advantages in natural field settings.
-
-
-
Investing in Rainfall Enhancement: An Innovative Plan for Arid Regions
Authors: David Delene and Mohamed ShamrukhWater security in arid regions like Qatar is a very important concern due to the limited availability of fresh water. While desalination can provide fresh water by removing minerals from saline water, the process is very costly and involves significant security issues. Desalination plants are a focus point of failure which provide most of the drinking water to cities like Riyadh and Aba Dubai. While drinking water in these modern cities in the Gulf Cooperation Council (GCC) comes from desalination, agriculture in many arid countries consumes a majority of groundwater. Groundwater in GCC deteriorated significantly due to over-abstraction. A more economical method of replenishing groundwater than desalination is enhancing natural precipitation using cloud seeding techniques, also known as weather modification. Many countries worldwide, including the United Arab Emirates (UAE) and Saudi Arabia, have conducted recent weather modification projects on rainfall enhancement. Glaciogenic and hygroscopic cloud seeding are two techniques based on solid scientific understanding used to enhance rainfall and thereby increase available water resources. Glaciogenic cloud seeding involves releasing ice nuclei (particles that cause formation of ice crystals) into clouds with super-cooled liquid droplets, while hygroscopic cloud seeding involves introducing large-sized hygroscopic particles at cloud base. To enable effective targeting of specific cloud regions, aircraft are typically used to deploy seeding particles. Seeded clouds have the efficiency of the precipitation process increased since the seeding particles are typically not naturally abundant. Atmospheric conditions important for precipitation development vary widely. For example, Mali in West Africa has cloud condensation nuclei condensations of 100–200 #/cm3, while in an arid region such as Saudi Arabia the concentration is 1200–1800 #/cm3. Therefore, a rain enhancement program should start with assessing the region's unique environment. The assessment should include measurements of the aerosol, cloud condensation nuclei, and cloud droplet concentrations; distribution of cloud base height and temperature; occurrence of super cooled liquid water; storm cell frequency, duration, and diurnal/seasonal variations. Obtaining these types of details on cloud properties requires a research aircraft such as the University of North Dakota's Citation Research Aircraft. The Citation Research Aircraft is a modified Cessna jet designed for conducting atmospheric research. The aircraft's basic instrument package includes measurements of speed, position, and atmospheric state parameters, such as temperature, relative humidity and winds. The Citation Research Aircraft also has very advanced instruments to conduct measurements of hydrometeor concentration, size and mass. The detailed measurements provided by a research aircraft should be supplemented with remote sensing observations made by radar and satellite platforms. Atmospheric observations provide knowledge of how variations in cloud condensation nuclei affect precipitation formation and how effective seeding particle are on increase precipitation amounts. A well-planned program assesses the region's conditions during Phase I before developing an operational plan to start cloud seeding. The operational plan's effectiveness would be assessed during a Phase II of the project. Scientists determine cloud seeding effectiveness by fully understanding the physical processes involved and/or by conducting a statistical analysis. Measurements that enable the region's important precipitation process to be accurately model provide a method for understanding the effectiveness of the seeding program. To statistically assess a program's effectiveness requires controls to compare with seeded clouds. If a program seeds all clouds which is typically done in a fully implemented weather modification project, then controls are not available to enable an assessment. An effective rainfall enhancement program requires a great deal of infrastructure and highly skilled personnel, which requires time to implement. Hence, it is best to plan a program over several years and understand that a successful program will required a continuous commitment over a 5–10 year period. Ideally, a long-term program would be cyclic, repeating the regional environment assessment, cloud seeding effectiveness evaluation, and operational program design phases approximately every 10 years to allow for implementation of the latest methodology and technology. Ideally, a rainfall enhancement program would include an ongoing research component to develop new weather modification methods and optimize existing methods for specific regions. For example, researcher should optimize hygroscopic flares for arid regions. Analyzing existing measurements and conducting new measurements with state-of-the-art instruments enables incorporation of cloud condensation nuclei measurements into models operated at cloud-allowing scales and designed for arid regions. The latest version of the Weather Research and Forecast (WRF) model includes the necessary micro-physical processes to account for precipitation changes due to different aerosol concentrations and land surfaces. Changes in cloud condensation nuclei concentration affect the cloud droplet size distribution and hence precipitation formation. Different land surface have different latent and sensible heat fluxes which affects cloud formation. Models that incorporate aerosol and land surface affects should provide accurate precipitation simulations. Simulations of arid region for several seasons allow the model to be validated. The validated model can then be used to access how different types of seeding material affect the region's precipitation. Once the optimized type of seeding particle is determined, new flares for arid regions can be designed. The new flares should be tested using aerosol and cloud chambers. To determine how newly developed flares can enhance precipitation formation, WRF model sensitivity studies should investigate how changes in the cloud droplet distribution seen in chamber research affect precipitation amount. The research component results is knowledge on how optimize seeding flares enhances the precipitation formation processes in an arid environment. Combining the increase in precipitation from the validated model simulation with the cost of conducting an operational program allows for a cost-benefit study to be conducted. Such a cost-benefit study would have to involve determining how much of the precipitation increase is available for near-term use and how much water is lost due to run-off and evaporation. Until the necessary atmospheric measurements are made and the precipitation model validated, it is not possible to know the exact price for fresh water created using weather modification methods in arid regions. However, studies indicate an increase of 5–10% with a relatively low-cost. Therefore, weather modification projects produce water at a cost far below other methods such as desalination. In conclusion, cloud seeding is a promising technique to augmentation precipitation to recharge depleted groundwater in countries such as Qatar; however, weather modification projects should considering the points highlighted above and plan to evaluate applied technique using a scientific assessment.
-
-
-
Hydrodynamic Modelling of the Northeastern Qatar Coast for Assessment of Sensitive Ecosystems under Anthropogenic and Natural Stressors
More LessThe Northeastern Qatari coast is comprised of diverse and sensitive flora and fauna such as seagrass meadows, turtles, algae, and coral reefs/patches that tolerate harsh environmental conditions. In the near future, this area may see a rise in anthropogenic activity in the form of coastal development projects, which will add to the existing natural stresses, such as high temperature, high salinity and low rates of precipitation. Therefore, there is a need to characterize the area and assess the potential impacts that these anthropogenic activities may have on the region. Eco-hydrological models are theoretical, mathematical representations of natural systems, made to help understand their functionalities under physical forcing. Site-specific data, hydrodynamic models, and ecological and physical phenomena are combined to build a functional ecosystem model that mimics real environments. These models can then be used to predict the impacts of anthropogenic and natural stressors on real systems. There are two main types of Eco-hydrological models: analytic and computational. Analytic models are usually less complex since they have an analytical solutions, and are used to represent simple or abstract systems with well-known behaviors. Alternatively, computational models are considered to be more ecologically sensible, as they can be used to solve complex systems that require the use of numerical techniques. The results of the computational model can vary between different numerical techniques or modeling software, resulting in uncertainty and variability that should be estimated. Given the complex nature of the environmental system in the Northeastern Qatari coast, numerical solutions using modeling software are developed to establish an adequate representation. There are three main modeling programs that have been used for the development of Ecological Response Models in Qatar (SWAN, GEMSS, and TELEMAC-2D). GEMSS provides a set of hydrodynamic, transportation and water quality modules allowing for the development of an integrated Eco-hydrological model according to the needs of each modeling application, which makes it the most appropriate software to use in this study. The aim of this study is to develop hydrodynamic and sediment transport models for a stretch of the Jabal Fuwairat Coastline in Qatar, using GEMSS and bathymetric LIDAR data processed with ArcGIS. The hydrodynamic model (HDM), which will be calibrated and tested using field data, simulates the spatial and temporal dynamics of the water, while the sediment transport model (STM) identifies, under present or simulated scenarios, the fate of the suspended sediments in the studied coastal zone. The STM provides data about sediment typologies, suspended particulate matter and currents that are near the seafloor (shear stress). The developed models will be tested using potential scenarios of future anthropogenic activities forecasted to take place in the area. The results will show the effects on water and sediment behavior, and provide a scientific basis for key stakeholders to make decisions with respect to the management of the considered coastal zone. It also provides a tool/framework that can be utilized in future hydrodynamic studies along other areas of the Qatari coastal zone. Furthermore, the outcomes are fundamental to developing a complete and accurate Eco-hydrological model. Keywords: Hydrodynamic Model, Sediment Transport Model, Anthropogenic stressors, coastal dynamics, GEMSS, ArcMap, LIDAR.
-
-
-
Chemical Characterization of Indoor and Outdoor PM2.5, PM10 and VOCs in a Public Building in Doha City, Qatar
Authors: Eman T. Sadoun, Eleni Fthenou, Konstantinos Kakosimos, Dikaia Saraga and Thomas MaggosIt is a fact that people spend 60-90% of their lifetime indoors; nevertheless, in case of Middle Eastern countries this percentage can reach 100%, especially during summer and dust storms periods. Indoor air quality (IAQ) is of great importance for peoples’ health, especially for vulnerable population groups. To the best of our knowledge, recent air quality studies in areas with hot and arid climate such as Qatar (or Middle East Area in general), are limited. Especially for the indoor environment, there is lack of indoor sources identification and consequently there are insufficient mitigation actions. This study aimed to assess the IAQ in an air-tight public building during warm season. For this scope, a monitoring campaign of particulate matter (PM2.5 and PM10) and volatile organic compounds (VOCs) for both indoor/outdoor measurements was performed at the Supreme Council of Health building in Doha, Qatar. The duration of the campaign was from 22/4/2015 to 21/6/2015. Chemical analysis for organic/elemental carbon (OC/EC), ions (NO3 − , SO4 2 − , Cl− , Br − , NH4 +, Na+, K+, Mg2+, Ca2+) and elements (Cu, Pb, Cr, Ni, Cd, Zn, Fe, Al) was conducted on the collected particle mass. Results showed that OC and EC outdoor values were higher (by 3-4 times) than the indoor ones for both PM fractions. Outdoor average OC value was 12.7 and 16.3 μgm− 3 for PM2.5 and PM10 respectively. Among the elements analyzed, Zn dominated in indoor samples followed by Mn, Ba, Pb while outdoors, Sr and Mn were the most abundant species. Concerning ions, indoor to outdoor ratio (I/O), was in all cases lower than unity implying the prevalence of outdoor sources emissions. Finally, I/O was close to unity for VOCs except for xylene and dlimonene, which were significantly higher indoors implying the existence of internal emission sources.
-
-
-
Synthesis and Characterization of Soluble Thiophene-, Selenophene- and Tellurophene-Vinylene Copolymers
Authors: Somnath Dey, Yang Han, Siham Y Al-Qaradawi, Hassan S Bazzi, Martin Heeney and Mohammed Al-HashimiOrganic electronic devices based on polymers received significant attention in the last decade, especially for organic photovoltaics (OPVs) and field-effect transistors (OFETs) despite their performances and stability clearly falling short of today's state-of-the-art crystalline silicon or copper indium germanium selenide (CIGS)-based devices. Flexibility in the manufacturing, light weight, lower fabrication cost, ease of integration into various devices, and large area coating are some of the major potential advantages of polymers over inorganic devices.
1 Among organic polymers, conjugated polymers attracted widespread attention for a wide range of applications. Thiophene-containing conjugated polymers, especially, poly(3-alkylthiophne) (P3AT) has been subjected to intensive research over last decade due to their excellent optical and electronic properties.
2 Moreover, poly(thienylenevinylene) (PTV) class of polymers displays high charge carrier mobilities in OFETs and promising performances in OPVs.
3 When a single solubilizing alkyl chain is included onto the PTV backbone, the resulting copolymer can be solution processed for optical devices. One simple strategy to manipulate the copolymer property is by changing the heteroatom of the thiophene from sulfur to other chalcogens, selenium or tellurium.
4 Theoretical calculations indicated that substitution with selenium or tellurium may reduce the optical band gap of the resulting polymer in comparison to their sulfur-containing analogues. Inclusion of larger and more polarizable selenium or tellurium also expected to have a strong influence on the charge transport properties. Notably, Heeney and co-workers showed that the band gap of P3AT can be reduced by as much as 0.3 eV by only substituting sulfur with selenium in the polymer backbone.
5 The reduction of band gap resulted from larger and more polarizable selenium facilitate better π orbital overlap with the polymer backbone and thus stabilize the polymer LUMO (lowest unoccupied molecular orbital). Low-lying LUMO levels are believe to facilitate both electron injection and transport. Recently, PBDTT-SeDPP polymer showed a high Jsc of 16.8 mA/cm2, a Voc of 0.69 V, and a FF of 62%, enabling the best PCE of 7.2%.
6 However, despite fascinating properties of selenium substituted polymers, tellurium containing polymers are less explored, may be due to challenging tellurium chemistry. Jahnke and co-workers recently reported first soluble tellurophene polymer, poly(3-alkyltellurophene) (P3ATe), prepared by both electrochemical and Kumuda coupling polymerization method.
7 Even though, preliminary PCE (1.1%) was modest, tellurium substitution resulted in red-shifted film absorption. In this contribution, we report the synthesis and characterization of vinylene copolymers containing 3-alkylthiophene, selenophene or tellurophene. This allows us systematically investigate the role of selenium or tellurium on the polymer properties. Here, we report the first synthesis of novel 2,5-dibrominated 3-alkyltellurophene monomer and its Pd[0]-catalyzed copolymerization with (E)1,2-bis(tributylstannyl)ethylene to afford poly(3-alkyltellurophenylenevinylene) (P3ATeV).
8 We compare the optoelectronic properties of P3ATeV with analogous sulfur (P3ATV) and selenium (P3ASV) containing polymers. Preliminary OFET data will also be incorporated. Scheme 1. Structures of P3AX, P3AXV copolymers.
References
1. Gang Li, Rui Zhu and Y. Yang, Nature Photonics 2012, 6, 153–161.
2. M. T. Dang, L. Hirsch and G. Wantz, Adv. Mater. 2011, 23, 3597–3602.
3. D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev. 2010, 110, 1857–1959.
4. M. Jeffries-EL, B. M. Kobilka and B. J. Hale, Macromolecules 2014, 47, 7253–7678.
5. M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe and S. Tierney, Chem. Commun. 2007, 5061–5063.
6. L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You and Y. Yang, Adv. Mater. 2013, 25, 825–831.
7. A. A. Jahnke, B. Djukic, T. M. McCormick, E. B. Domingo, C. Hellmann, Y. Lee and D. S. Seferos, J. Am. Chem. Soc. 2013, 135, 951–954.
8. M. Al-Hashimi, Y. Han, J. Smith, H. S. Bazzi, S. Y. A. Alqaradawi, S. Watkins, T. D. Anthopoulos, M. Heeney, Chem. Sci. 2015, DOI: 10.1039/C5SC03501E.
-
-
-
Using Supply/Demand Graphs Based Models for Maximizing Fault Resistance in Smartgrids
More LessIn the recent years there has been a growing interest in electric systems which integrate communication, control, and sensing technologies to efficiently shape the electricity consumption also known as smartgrids. It has been shown that if such a system is organized into a network of interconnected microgrids there is a vast number of positive effects. The basic idea of this approach is to separate the electrical grid into smaller, highly independent subsections (microgrids). This approach has resulted in novel types of typologies for electrical grids and new aspects of such systems that should be considered. In this way many problems can be localized. For example when a high level of renewable energy sources are added to the system the fluctuations in the voltage and frequency that occur, can be to, a certain extent, isolated from the main grid. The new topology has made it crucial to optimize several important properties like the self-adequacy, reliability, supply-security and the potential for self-healing. Many of these practical issues can be modeled using graphs. Previous research has shown that the problem of the maximal partitioning of graphs with supply and demand (MPGSD) is closely related to electrical distribution systems, especially in the context of interconnected microgrids. The advantage of using this type of graph model is the possibility of solving large scale problems in reasonable time. The use of MPGSD is essential in analyzing the optimal division of the whole grid into microgrids. Here the term optimized is used for the case when there is a minimum of power exchange between the connected microgrids, which is generally referred to as the maximization of self-adequacy. Another important property of such interconnected systems is the fault resistance. In this work we present a new version of the MPGSD, suitable for maximizing failure resistance in such systems. To be exact we develop a model that attempts to maximize the self-adequacy but with an additional constraint of providing that the system maintains stability even in the case of some failures. To accomplish this, the original problem has been extended in two directions. The first one corresponds to fault tolerance in individual microgrids. In this case a new constraint is added that to each of the subgraphs (microgrids) must be Hamiltonian. By doing so it is guaranteed that no islanding will occur inside a microgrid even if some connections brake. The second adaptation is used to maximize the resistance of the entire distribution system to failures of entire microgrids. To be more precise we wish to guaranty that the system as a whole will be stable even if some of the microgrids fail. In practice we are minimizing the number of articulation points of the graph in which each of the subgraphs represents a node. For the proposed problem a mathematical model is developed that makes it possible to find optimal solution for small systems. These results are used to develop a heuristic method for finding near optimal solutions for large scale problem instances. We also explore the relation between the maximization of failure resistance on the level of individual microgrids and the whole system.
-
-
-
Application of Osmotic Concentration for Volume Reduction of Produced/Process Water from Gas-Field Operations
Authors: Samer Adham, Ana Santos, Joel Minier-Matar, Altaf Hussain, Arnold Janson, Rong Wang and Anthony G. FaneIn order to ensure long-term sustainability of the reservoir, the gas industry in Qatar is faced with the challenge of reducing the volume of produced and process water (PPW) sent to disposal wells by 50% [1-3]. Recently, Qatargas initiated a project to recycle process water and thus, reduce disposal volumes using commercial advanced water treatment technologies [4]. One emerging technology, “osmotic concentration” (OC) has been identified that offers a low-energy alternative to conventional thermal or membrane volume reduction methods. Osmotic concentration is a membrane filtration process that mimics first step in a forward osmosis (FO) system. It requires a high salinity draw solution (DS) which passes on one side of a semi-permeable FO membrane while the feed passes on the other side. Water from the feed is drawn through the membrane, via natural osmosis, reducing the feed volume and increasing the volume of the draw solution. This paper summarizes the results of bench-scale volume reduction tests with PPW collected from Qatar's North Field operations as the feed and either seawater or the concentrated brine from thermal desalination plants as the draw solution. While in conventional forward osmosis, the draw solution is regenerated, in OC, there is no regeneration of the draw solution. The diluted seawater or brine would be simply discharged to the Arabian Gulf. For future projects/developments, the authors have proposed OC for PPW volume reduction, which can be a cost-efficient alternative to achieve 50% reduction in disposal volumes (Fig. 1). This approach is particularly applicable in Qatar due to close proximity of desalination plants and gas processing facilities. In all membrane processes, the driving force for permeation is pressure. The mechanism by which the pressure is created differentiates various membrane processes: Reverse osmosis: static pressure generated by a pump Membrane distillation: vapor pressure differential due to a difference in temperature Osmotic concentration: osmotic pressure differential due to a difference in salinity. In these examples, the driving force or transmembrane pressure (TMP) can be measured in units of kPa or bar. In reverse osmosis, the TMP ranges from 15 to 60 bar depending on the salinity of the feed. In osmotic concentration, a comparable TMP of 15 to 60 bar is generated simply by high salinity the draw solution, i.e. without any static pressure being required and hence the low energy requirements for OC processes. In addition to significantly lower operating energy requirements [5], an OC process offers the following advantages over reverse osmosis (RO): Lower capital cost because pressure-rated vessels and high pressure pumps are not required [6]; There is strong evidence that FO membranes are less prone to irreversible fouling than RO membranes and foulants can be removed by simple flushing with clean water with no addition of chemicals [7,8]; The water discharged to the Arabian Gulf is of lower salinity and that provides an environmental benefit. The primary disadvantages of OC are that there is no water recovery after the separation process and there is limited experience from full-scale water treatment installations. The main objective of this study was to investigate the feasibility of OC to concentrate PPW from gas operations by 50% using brine from thermal desalination plants as draw solution. The PPW was a combination of gas field produced water extracted from an offshore reservoir and process water from onshore operations. The blending ratio between produced and process water was approximately 1:5. The PPW underwent deoiling, H2S removal and cartridge filtration (2 mm). The detailed composition of PPW and brine from thermal desalination plant are shown in Table 1. During this study, experiments were conducted to evaluate OC performance in treating PPW in the following areas: membrane configuration membrane fouling effect of pretreatment process optimization long-term stability/performance. In all tests, the active layer faced the feed solution (AL-FS mode) since this configuration provides better control of feed-side fouling. Membrane configuration During this project, two membrane configurations were evaluated: Flat sheet (FS) membranes, commercially available [9]Hollow fiber (HF) membranes, Singapore Membrane Technology Centre [10, 11]. The membrane surface areas were 0.014 and 0.0106 m2 for the FS and HF modules, respectively. Experiments were conducted using two feed solutions: DI water and PPW. Results showed that the HF membranes had improved performance from both the water flux and reverse solute flux (RSF) perspectives. The HF membrane flux was ≈ 35 to 45% higher for both DI water and PPW (Fig. 2). With PPW as feed at 25?°C, the RSF was measured for both membranes and the results showed that HF membranes exhibited ≤ 3 mmol/m2 h RSF for Na+ and Cl− while FS membranes showed a RSF of ≈ 20 mmol/m2h for both ions. RSF is highly sensitive to operating temperature. Because HF membranes showed superior performance and there are also commercial advantages (higher packing density, lower fabrication cost), experiments focused on evaluating HF performance in treating PPW. Membrane fouling: To assess if membrane fouling occurred, a benchmark test with DI water as feed solution and 1M NaCl as draw solution at 25?°C was conducted before and after each fouling test. A decline in the benchmark flux after treating PPW would indicate that membrane fouling had occurred. The fouling tests were conducted on two feed streams: synthetic PPW (mimicking only the inorganic content of PPW) and real PPW. During the experiments, the initial volume of PPW was reduced by 50% and the draw solution (DS) was 1M NaCl. The DS concentration, for both benchmark and fouling tests, was maintained constant throughout the experiments by adding concentrated NaCl solution based on conductivity measurements. While the results for synthetic PPW showed that no fouling had occurred, the results showed that PPW could cause fouling on the membrane surface since the benchmark flux decreased from 17.5 to 15 L/m2?h (Fig. 3). The fouling was attributed to the organics present in the PPW since no flux decline was observed on the when synthetic PPW was used as feed. These results highlighted the need for effective pretreatment to remove organics. Effect of pretreatment: To determine if pretreatment could remove the organics responsible for fouling, a number of methods were screened and ultimately powdered activated carbon (PAC) was selected for pretreatment of the PPW. PAC is widely used for organics removal and previously evaluated for similar applications [12]. Lab results showed that at a dosage of 500 mg/L PAC, the TOC from the PPW was reduced from 132 to 45 mg/L. The PAC dosage was considered very high for a full-scale application and further pretreatment optimization is needed before field implementation. OC performance experiments showed no decline in benchmark flux when the volume of pretreated PPW was reduced by 50% indicating that pretreatment is essential for the successful implementation OC to reduce PPW disposal volumes. Results also showed that the HF membranes have good rejection for organics. For both the treated and untreated PPW, the TOC in the draw solution after OC treatment was below the 1 mg/L detection limit indicating that the membrane rejection of the organics was >99%. Process optimization: Box-Behnken design: The main operating parameters for this application were optimized using a Box-Behnken design (BBD) [13, 14]. BBD is a response surface methodology that explores the effect of different input variables (temperature, draw solution concentration and feed crossflow velocity) on the output response (flux). This statistical tool takes into consideration the combined effects and interdependence of the input variables and significantly reduces the number of tests required as compared to the conventional factorial experimental design. The following parameters and test values were used during the BBD experiments: Temperature: 25, 35 and 45?°C Draw solution concentrations: 40, 55 and 70 g/L NaCl Feed crossflow velocity: 40, 60, 80 cm/s. Results showed that the temperature has the greatest impact on the flux, since it influences the water viscosity. DS concentration directly affects the osmotic pressure, influencing the flux. The feed crossflow velocity did not affect the process performance over the range tested. These results are consistent with authors’ expectations and general published results. Based on the BBD analysis, the optimized process conditions were: 45°C temperature, 70 g/L draw solution concentration and 80 cm/s feed crossflow velocity. Figure 4 shows the comparison of the OC performance, to achieve 50% feed volume reduction, at benchmark (25?°C, 70 cm/s, 58.5 g/L NaCl) and optimized (45?°C, 80 cm/s, 70 g/L NaCl) conditions. Long-term performance and water quality: The elimination of the water recovery step in osmotic concentration makes it an energy efficient process [5]. To confirm if the brine from thermal desalination plants is a suitable DS for the treatment of PPW, a long-term experiment was performed simulating full-scale operation. In earlier experiments, the concentration of the DS was maintained constant, by adding concentrated DS. Since this is not feasible in full-scale applications, a process stability experiment was carried out without controlling the DS's concentration, allowing it to dilute with time as water permeates through the FO membrane. The experiment was conducted using pretreated PPW as feed and brine from thermal desalination plant as DS. The solution temperature was 45?°C since this is the expected temperature of the brine discharged from the desalination plant. The feed and draw solutions crossflow velocities were 80 and 40 cm/s respectively. The test was conducted for 80 hours. The PPW initial volume was 42 L and it was reduced in volume by 50% while the volume of the draw solution, initially 21 L, was increased to 42 L, reducing its salinity by 50%. A relatively stable performance was observed throughout the experiment with a 30% decrease in flux (from 28 to 20 L/m2?h) due to the decrease of the effective osmotic pressure and to the influence of the internal concentration polarization (ICP). After a sharp initial decline in osmotic pressure differential, the decline in flux almost tracked the decline in the osmotic pressure differential (Fig. 5). DI water fluxes during benchmark tests conducted before and after the experiment remained constant at 19.4 L/m2?h indicating that negligible fouling occurred. To evaluate the ability of HF membranes to reject specific contaminants, various water quality analyses were performed. Results showed that HF membranes have high rejection capabilities. The ions with the highest solute fluxes values were sodium and chloride with a RSF of 120 and 91 mmol/(m2?h) respectively at 45?°C (Table 2). Although a small amount of nitrogen passed through the membrane from the PPW to the draw solution, at the levels found (5.8 mg/L), it was below the discharge limits set by the State of Qatar and the European commission (10 mg/L) [15]. The results also showed that the organic carbon present in the PPW was rejected by the membrane and retained in the PPW. A slightly increase in the TOC concentration in the DS was observed and it could be attributed to uncertainties in the analysis since the results were at the low end of the measurement accuracy. Finally, preliminary cost estimates and energy calculations showed that OC is economically feasible to reduce PPW injection volumes from gas fields in an environmentally sustainable manner. The research team is currently evaluating different pilot testing opportunities to further demonstrate the cost-effectiveness of this technology under relevant field conditions.
-
-
-
Cold Plasma as Effective Tool for Aluminum Surface Cleaning
Authors: Anton Popelka and Igor KrupaAluminum (Al) is heavily used to manufacture structural parts in the aeronautic, railway, automotive or naval industries because of its lightness and its corrosion resistance [1]. One of the most popular uses of Al is in the packaging industry. Moreover, it plays a main role in the construction, such as aluminum composite panel. The surface properties (surface energy, roughness and surface chemistry) of Al are critically important in achieving good wettability, bond formation and durable adhesion [2]. The classical chemical methods of surface cleaning and degreasing such as phosphoric acid anodizing are the basis for high-strength and everlasting adhesive bonds, at e.g. bonding of Al and its alloys with adhesives. However, nowadays the use of wet methods for the surface treatment of Al doesn't comply with ecologic standards [3]. Cold plasma treatment represents an efficient, clean and economic alternative to activate and enhance both wettability and adhesive properties of Al surfaces [4]. This research was focused on the improvement of surface and adhesion properties of the Al surface using eco-friendly plasma surface treatment and understanding plasma effect on the enhancement of surface and adhesion properties. In this research, plasma system was used for the cleaning of the Al surface and the improvement of the surface and adhesive properties necessary for laminates applications. The wettability of Al samples was very low as result of the impurities originated from rolling oil. Al foils are usually produced by rolling down strip processes consisted of number of cold-rolling steps responsible for the reduction of the thickness. In the final step, two layers of foils are wounded together and rolling oil is sprayed between the two layers and the “twin foil” is rolled down. A continuous amorphous oxide layer is formed immediately after rolling process due to the reaction of oxygen and air humidity and therefore new metal surface is produced [5]. The oxide layer and rest of oil usually present in prepared Al foils result in low wettability. For the above mentioned reasons, surface free energy achieved very low values, 33 mJ/m2. Plasma treatment of Al foils led to effective removing of weakly bounded and dirty layers resulting in the wettability increase as result of ablation processes. The most increase of wettability was observed after 7 s of corona effect, while surface free energy increased to 83 mJ/m2. Surface free energy closely relates also with the chemical composition. Fourier Transform Infrared Spectroscopy (FTIR) was employed to analyze the plasma effect of the Al surface. The FTIR spectrum of untreated Al was characterized by characteristic peaks corresponding to the vibrations of Al-OH groups (Fig. 1). Moreover, asymmetric and symmetric vibrations of -CH2- groups belonging to processing oil used during production processes of thin Al foils. Plasma treatment led to the noticeable decrease of the intensity of these groups and therefore to the increase of the Al-OH absorbance band intensity. The other techniques such as Atomic force microscopy and Scanning electron microscopy confirmed the changes in the surface roughness contributing to the surface free energy increase. The enhancement of surface properties led to the improvement of adhesive properties too, which was confirmed from peel resistance measurement of prepared Al-polyethylene laminates. Moreover, the contribution of plasma effect on the enhancement of adhesion properties of Al surface was proven using Al- polyethylene adhesive joints prepared using adhesion promoters.
Acknowledgement
This publication was made possible by the UREP award [UREP 15-071-2-025] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
References
[1] W. Polini, L. Sorrentino, Appl. Surf. Sci. 214, 232 (2003).
[2] L. Petersson, P. Meier, X. Kornmann, H. Hillborg, J. Phys. D: Appl. Phys. 44, 03401 (2011).
[3] L. Bónová, A. Zahoranová, D. Kováčik, M. Zahoran, M. Mičušík, M. Černák. Appl. Surf. Sci. 331, 79 (2015).
[4] C. Dartevelle, E. McAlpine, G.E. Thompson, M.R. Alexander. Surf. Coat. Tech. 173, 249 (2003).
[5] N.A. Thorne, P. Thuery, A. Frichet, P. Gimenez, A. Sartre, Surf. Interface Anal. 16, 236 (1990).
-
-
-
Qatari Waters Hold Scientific Treasures: Discovery of a New Extremophile Plankton Organism in the Khor Al-Adaid (Inland Sea)
The Khor Al-Adaid “Inland sea” in Qatar is a unique desert lagoon, located in the South east of Qatar and is characterized by a distinct salinity gradient (ca. 4% halite salt to saturated conditions). In the framework of the QNRF funded NPRP project, researchers from Qatar, Germany and Austria have succeeded to isolate and cultivate a new unicellular eukaryote (protist) from Qatar's unique Inland Sea (Khor Al-Adaid). Initial genetic marker analyses pointed to the novelty of this organisms and morphological characterization confirmed that this isolated organism is not yet known and described from any other place in the world. Even though only 1/50th of a mm in length, this organism may hold secrets worth unlocking: the Qatar's Inland Sea is characterized by extremely high salt concentrations. With the discovery of this new organism from the Inland Sea the team of researchers hold in their hands a valuable unique treasure from Qatar's natural heritage. Future efforts will be to exploit this treasure for its genomic and biotechnological potential. The new species belongs to the genus Euplotes, and is coined the name Euplotes qatarensis nov. spec.
-
-
-
Feasibility Study on an Efficient Electricity Tariff Solution for Renewable Energy Initiative of Qatar
By Zhaohui CenComparing Qatar with some developed countries such as Unite States and Europe, electricity price in Qatar is ultra-low because most of electricity is produced from low-cost gas and subsides are offered by the goverment. With facing this truth, it is very important to keep in mind that current electricity tariff is neither sustainable nor energy-saving due to oil price down, and also it will cause more and more electricity waste and carbon emission. Therefore, it is necessary for stakeholders and policymakers such as Kahramaa to evaluate what is the best tariff for electricity tariff for energy-saving and renewable energy initiative of Qatar. This paper investigate and addresses this issue by developing an approach on how to design and validate an efficient electricity tariff for renewable energy in Qatar. Firstly, negative impacts on the public and other stakeholders are investigated for the current electricity tariff. Based on demand analysis, a numerical pricing model of electricity for suppliers and users is built, and its quantitative economics are designed, considering renewables as a key utility function factor. Based on the designed pricing model of electricity, a convex quadratic minimization with linear constraints is defined. Optimization solving algorithms based on Artificial Intelligence such as Genetic Algorithm (GA) and Ant Colony Algorithm (ACA) are utilized to search the best solution to maximize the utility function. Finally, the dynamics of the pricing model is investigated and validated based on simulation scenarios. The main contribution of this study is to help stakeholders such as Kaharama to evaluate the effectiveness of current electricity tariff and advise a better pricing solution under consideration for renewable energy initiative of Qatar. Also, the quantitative model can also work as an efficient and dynamic evaluation tool and approach for stakeholders and policy-makers.
-
-
-
Smart Energy Efficient Air-Conditioning System
More LessGCC's climate has a high ambient temperatures throughout most of the year, therefore, the air conditioning is not optional or luxury, it is a necessity. Residential sector in those countries represents the largest portion of electricity consumption. According to Qatar National Development Strategy (QNDS) 2011-2016, two-thirds (67 percent) of total residential power consumption in Qatar is due to air conditioning units (AC), Such heavy cooling demand is expected to approximately triple by 2030. Thereby, the fuel needed to power air-conditioning units in the GCC will is expected to 1.5 million barrels of oil per day. Energy efficient system is basically depending on two different categories; technological modification program and behavioral modification program. Both programs are required for energy efficient air conditioner systems. Existing air conditioner systems are based on conventional technological modification systems without considering the behavioral modification program which are impacted by the cost of implementation, impact on running systems as well as providing a fixed step algorithm of closed loop control between utility and residential customer. Therefore, we present a novel embedded real-time, smart, active energy and efficient air conditioning system for minimizing energy consumption, and minimizing energy cost per day while considering residential customer preferences, comfort level in behavioral modification program and health aspect, which provides opportunity for residential customer to reduce energy consumption improve energy efficiency with cost effective manners and healthcare concept. The proposed algorithm automatic adjustment air conditioning temperature below the outdoor temperature as recommended from physiologists. In addition the proposed energy efficient Air-conditioning system equipped with embedded tools to collects and monitor energy information for each air conditioning through measurements of current, voltages, frequency, active power (kW), reactive power (kVAR), apparent power (kVA), power factor (PF), total harmonic distortion (THD) to increased awareness of the importance of energy efficiency and energy saving benefits. The system has three modes of operation; automatic, semi-automatic and manual. The automatic status i.e. the system smartly and completely controls airflow/energy consumption of air conditioner at all times based on Psychrometric Chart; semi-automatic status is designed to quickly and efficiently controlled energy usage with fixed selected temperature value. The manual status is considered as a conventional, delivery and use of energy without any control. The Smart energy efficiency algorithm is set based on psychrometric chart, load importance, comfort level, room temperature, and internet weather service. The proposed novel system leads to achieve comfortable temperature with less energy consumption over many hours during the day. The proposed energy management strategy aims to save around 15-26% of daily energy consumption. Index Terms -Energy-efficient, air conditioning, Energy saving.
-
-
-
Inorganic Porous Materials Based Epoxy Self-Healing Coatings
Authors: P Poornima Vijayan and Mariam Ali S A Al-MaadeedThe long-term stability of protective coating for metal is critically important for structural applications [1, 2]. Self-healing ability extend the service life of protective coatings leading to a significant reduction in maintenance cost for oil and gas pipe lines and structural parts in civil and construction industry. Recently, the self-healing technology based on healing agent loaded containers has been receiving attention [3, 4]. The incorporation of self- healing agent loaded containers into polymer matrix can be carried out using existing blending techniques. Hence, this technology facilitate large-scale application of self-healing materials [5]. Different micro or nano containers has been used for the storage and release of self-healing agents upon specific corrosion triggering conditions (e.g. on pH change) or upon mechanical damage [6]. Polymer capsules, polymer nanofibers, hollow glass bubbles, hollow glass fibers etc. were used by the researchers to load the healing agent inside their cavity. The inorganic particles with nano cavity offers large surface area, high pore volume and good stability favorable for the storage of the healing agents. Moreover, the usage of inorganic nanomaterials as reservoirs for healing agent can eliminate the tedious encapsulation process. The present study aims to use inorganic nanotubes and mesoporous silica as containers for healing agents in epoxy coating. The ability of Halloysite nanotubes (HNT), titanium dioxide (TiO2) nanotube and mesoporous silica to load and release the healing agents are investigated and compared their performance. Among them, Halloysite nanotubes are naturally occurring clay mineral. Meanwhile, TiO2 nanotube and mesoporous silica are synthesised in laboratory and characterised using scanning electron microscopic (SEM), transmission electron microscopic (TEM) techniques and Brunauer–Emmett–Teller (BET) surface area analysis. The morphology of the nanotubes and mesoporous silica are shown in Fig. 1 (in supporting file). In this study, the epoxy pre-polymer and hardener are used as healing agents. Containers loaded with epoxy and hardener can provide a repair system with matching chemical entity with host epoxy coating. Both epoxy encapsulated nanotubes (either Halloysite or TiO2 nanotubes) and amine immobilized mesoporous silica are incorporated into epoxy, followed by the addition of diethylenetriamine curing agent. The mixture is coated on the metal with an average thickness of 300 μm. The controlled epoxy coatings are also prepared without nanotube and mesoporous silica. Epoxy coating loaded with encapsulated Halloysite nanotubes and immobilized mesoporous silica is abbreviated as ‘EP/HNT/SiO2’ and the one loaded with encapsulated TiO2 nanotubes and immobilized mesoporous silica is abbreviated as ‘EP/ TiO2/SiO2’. The self-healing ability of the scratched coatings is monitored by electrochemical impedance spectroscopy (EIS) in definite time intervals for 5 days. Both EIS bode plots and tafel polarization curves are analysed to observe the self-healing ability of the coatings. For the scratched controlled epoxy coating, after an immersion time of 24 hours, the impedance curve drop to its minimum value over the entire frequency range and on further immersion period the impedance curve remains its minimum value. However, in the case of self-healing coatings, the initially declined impedance value recovers in successive days. The recovery in low frequency impedance values (at 0.01 Hz), which is a direct reflection of the recovery of corrosion resistance of the coating are evaluated. While EP/TiO2/SiO2 coating recovered 57% of its anticorrosive property, the EP/HNT/SiO2 coating recovered only 0.026%. This results suggest that the nature of the nanotubes affect the amount and rate of healing agent released into the scratched area from the tube lumen which itself affect the self-healing ability of the coating. SEM is also used to observe the healed scratches on the coatings. After 96 hours of immersion in 3.5 wt% NaCl solution, the scratches in EP/TiO2/SiO2 self-healing coatings are found to be almost covered. The results confirm the effective self-healing ability of the EP/TiO2/SiO2 coating in which the released epoxy pre-polymer from nanotube lumen get contact with the amine hardener immobilized in mesoporous silica and cross-link to cover the scratch. Acknowledgment: This abstract was made possible by PDRA grant # PDRA1-1216-13014 from the Qatar national research fund (a member of Qatar foundation). The findings achieved herein are solely the responsibility of the authors.
References
1. C. Suryanarayana, K. Chowdoji Rao, Dhirendra Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings, Progress in Organic Coatings, 63 (2008) 72-78.
2. A. C. Balaskas, I. A. Kartsonakis, L.-A. Tziveleka, G. C. Kordas, Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline, Progress in Organic Coatings 74 (2012) 418-426.
3. E. M. Fayyad, M. A. AlMaadeed, A. Jones, A. M. Abdullah, Evaluation Techniques for the Corrosion Resistance of Self-Healing Coatings. International Journal of electrochemical science, 2014, 9, 4989-5011.
4. E. M. Fayyad, M. A. AlMaadeed, A. Johns, Preparation and characterization of urea–formaldehyde microcapsules filled with paraffin, Polymer Bulletin, 2015, 10.1007/s00289-015-1518-x (In Press).
5. D. Y. Zhu, M. Z. Rong, M. Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation, Progress in Polymer Science, 49-50 (2015) 175-220.
6. H. Wei, Y. Wang, J. Guo, N. Z. Shen, D. Jiang, X. Zhang, X. Yan, J. Zhu, Q. Wang, L. Shao, H. Lin, S. Wei, Z. Guo, Advanced micro/nanocapsules for self-healing smart anticorrosion coatings, J. Mater. Chem. A, 3 (2015) 469-480.
-
-
-
Analysis of Partial Electrocoalescence by Level-Set and Finite Element Methods
The coalescence of a water drop in a dieletric oil phase at a water layer interface in the presence of an electric field is simulated by solving the Navier-Stokes and charge conservation equations with the finite element method. The proprietary software Comsol Multiphysics is used for this purpose. The interface between the oil and water phases is tracked by implementing a level-set approach. Preliminary simulations to assess the sensitivity of the model with respect to some input parameters are reported. In particular, the calculations are very sensitive to the size of the computational grid elements and the interface thickness parameter. Nevertheless, the model is able to reproduce the occurrence of partial coalescence for the experimental case examined. Good quantitative agreement can be obtained if the parameters are suitably tuned.
Introduction
The application of an external electric field is a technique currently used in the oil industry to promote migration and enhance coalescence of droplets in the water-in-oil emulsions formed during the oil extraction process [1, 2]. It is generally acknowledged that the effect of the electric field is to increase film drainage and hence the thinning rate between two coalescing droplets [1]. However, an excessive value of the field strength can reduce the quality of coalescence, as secondary droplets form [3-6] as a result of an incomplete coalescence process. The efficiency of the process would be significantly improved if the operating conditions to prevent partial coalescence from occurring were known. In this regard, it has been shown [5] that the ratio between the volume of the secondary droplet formed and the initial drop volume can be described as a function of a dimensionless number which is the product of the Weber and Onhesorge numbers. The same authors have recently addressed the effect of the electric field type on the coalescence quality. Their experimental results have revealed that the volume of the secondary droplet decreases if pulse-DC fields are applied, leading to the transition from partial to complete coalescence under certain conditions [6]. These findings can have an important impact on the development of compact electrocoalescer designs. The aim of this work is to provide a mathematical description of the phenomenon. For this purpose, a finite element approach combined with the level-set method [7] is adopted in this work to analyse the process of partial coalescence. To the authors' knowledge, there are no attempts at predicting numerically the occurrence of incomplete coalescence in the presence of an electric field. The proprietary software Comsol Multiphysics (Comsol, Sweden) software has been used for this purpose, in an attempt to assess the capability of the proposed approach to reproduce and analyses the phenomenon.
Model Equations
A level-set approach is employed to track the boundaries between different phases. The evolution of the boundary is described by the equation: where is a smooth step function which varies from 0 to 1 across different phase domains, is a reinitialization parameter which gives stability to the solution and is related to the thickness of the interface. The fluid velocity is denoted by u (bold letters denote vectors). It should be noted that Eq. (1) is the non-conservative formulation of the level-set equation, which attains convergence more easily but introduces some errors in the calculations. However, the non-conservative formulation is more suitable for a rapid test of the model capabilities. Navier-Stokes and continuity equations are solved using average physical properties for the two phases: where and are the volume fraction weighted density and viscosity, which differ from the pure liquids properties only at the interface. In eq. (2), forces due to surface tension and induced by the electric field are included. The force due to surface tension is calculated as: where is the surface tension coefficient, the local surface curvature, n the outward pointing interface normal vector and d is a smooth approximation of the Dirac function which is non-zero only at the interface. The electric force is calculated from the divergence of the Maxwell tensor: where is the average permittivity. The electric field E is computed by satisfying the charge conservation equation: where is the average conductivity. With reference to the computational domain depicted in Fig. 1, the following boundary conditions have been applied in order to solve this set of equations: the upper boundary is kept at a fixed electric potential while the opposite one is earthed and no-slip conditions are prescribed for both boundaries; the domain is axisymmetric; slip conditions are considered on the right boundary, as this allows significant reduction of the simulation domain. The properties of the two liquids correspond to the sunflower oil/water system investigated experimentally by Mousavichoubeh et al. [5] and are reported in Table 1. The interfacial tension is equal to 25 mN mm–1, as measure experimentally. In order to assess the effect of and the mesh element size, the following case is analysed. The initial drop size is 1.196 mm and the electric field strength is 373 V mm–1. Under these conditions, partial coalescence occurs and the ratio between the volume of the secondary droplets formed and the initial drop volume is equal to about 0.088, as measured by Mousavichoubeh et al. [3].
Results
The calculated values of this ratio are reported in Table 2. For all cases, the reinitialization parameter is set equal to 1 m/s, which is comparable to the maximum fluid velocity in the system. The results shown in Table 2 reveal that the tuning of the interface thickness, is strictly connected to the level of mesh refinement (hmax/D is the maximum element size in the computational grid). With, the calculated volume of secondary droplets becomes invariant with the grid element size when this is sufficiently small. In this case the volume ratio of the secondary droplet to that of the initial drop is very close to the experimental value. However, the phenomenology described in the two simulations is different, and the results are compared in Figs. 2 and 3. The value of does not produce realistic results and convergence fails in a number of cases of the behaviour observed experimentally is also reported in Fig. 4. The numerical results obtained with reproduce the experimental observations exactly, whereas with a jet-like behavior is reproduced. This may be due to the larger interface thickness, which makes the droplet more deformable and the break-up process more difficult, although the predicted volume ratio is very close to the experimental value. problems, and a solution is obtained only for, which, however, provides a higher value of the secondary droplet volume formed as compared to the experiments. Decreasing further the grid element size to 0.02 causes non-convergence again, as should usually be smaller than the maximum grid size. This requirement becomes more critical when is small.
Conclusions
A model to describe partial coalescence in the presence of an electric field has been proposed. It has proved to be capable of reproducing the phenomenon observed in experimental work previously reported in the literature. A satisfactory quantitative agreement can be achieved by the right selection of the interface thickness parameter and computational grid size. This study constitutes the basis for the development of a reliable mathematical description which can be used for the design of a compact and efficient electrocoalescer.
Acknowledgement
This work was made possible by NPRP grant #5-366-2-1435-366-2-143 from the Qatar National Research Fund (A Member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
References
[1] Mhatre, S., Vivacqua, V., Ghadiri, M., Abdullah, A.M., Al-Marri, M.J., Hassanpour, A., Hewakandamby, B., Azzopardi, B., Kermani B., 2015. Electrostatic phase separation: A review. Chem Eng Res Des, 96, 177-195.
[2] Vivacqua V., Mhatre S., Ghadiri M., Abdullah A. M., Hassanpour A., Al-Marri M. J., Azzopardi B., Hewakandamby B., Kermani B. (2015). Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields Chem Eng Res Des, doi:10.1016/j.cherd.2015.10.006.
[3] Aryafar H., Kavehpour H.P. (2009). Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces, Langmuir 25 (21), 12460-12465.
[4] Mousavichoubeh M., Ghadiri M. and Shariaty-Niassar M., 2011a. Electro-coalescence of an aqueous droplet at an oil–water interface, Chem Eng Process, 50, 338-344.
[5] Mousavichoubeh M., Shariaty-Niassar M. and Ghadiri M., 2011b. The effect of interfacial tension on secondary drop formation in electrocoalescence of water droplets in oil, Chem Eng Sci, 66, 5330-5337.
[6] Mousavi, S.H., Ghadiri, M. and Buckley, M., 2014. Electro-coalescence of water drops in oils under pulsatile electric fields. Chem Eng Sci, 120, 130-142.
[7] Sethian, James A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press. ISBN 0-521-64557-3.
-
-
-
Characterisation and Classification of Daily Sky Conditions Between the 23rd and 27th Parallel North for Improved Energy Security
More LessThe installed capacity of grid-tied photovoltaic (PV) systems around the globe is increasing rapidly due to the need for clean, sustainable and fuel independent energy. The PV technology is already a major part of the energy mix in many developed and developing countries. The electricity generated from these systems heavily depends on the prevailing weather conditions and is directly related to the available solar irradiance. Therefore, the electricity injected into the grid from these systems is intermittent reducing the utility of that generated power. Any sudden irradiance changes, due to passing clouds, rain, dust storms, etc., directly affect the power response of solar systems, compromising the security of electricity supply and resulting in the need for operating reserves to stabilize the supply. The further deployment of grid connected PV systems will benefit greatly by developing the methodology to systematically study and analyse the variability and quantity of the power produced by installed PV systems. This is done in this study by identifying existing patterns of the solar irradiance at the particular location of interest using historical data. The results of this research will eventually lead to a highly reliable and accurate forecasting of the energy production from such PV systems. In this domain, accurate and reliable PV supply forecasting will significantly increase its utility and will reduce the need to rely on conventional (fuel based) supply. In particular, solar irradiance has a direct bearing on the performance of PV systems and the quality of the energy supplied to the grid. The power production at a given location can be characterised via the quantity and the quality index. The quantity index reflects the amount of power produced, which mainly affects the scheduling of the centralised electricity generation by the system operator. In cases where PV penetration is significant this has to be supported by an appropriate energy mix (conventional units, energy storage systems (ESS), etc.) [1–3]. On the other hand, the quality index defines the frequency and ramp power of the fluctuations of the PV energy produced, caused mainly by passing clouds. Frequent and large fluctuations cause potential problems to the grid compromising the security of supply. Consequently, the quality of the resource dictates the corrective action that should be implemented to avoid grid problems. These actions can be either grid integrated energy storage systems or the allocation of appropriate spinning reserve in order to fill the energy valleys [3]. In this work a method for classifying and characterising the solar irradiance based on real outdoor measurements is outlined by calculating a quantity and quality index for each day. The analysis was performed with 1-minute resolution global horizontal irradiance (GHI) measurements and validated with 4 years of recorded data. The data are extracted from weather stations located between the 23rd and 27th parallels north, as indicated in Table 1. Different locations around similar latitudes are chosen in order to examine the solar irradiance behaviour at locations sharing similar climatic conditions and daytime periods. Furthermore, 4 years of data are used from each weather station in order to evaluate the repeatability of patterns identified, thus improving solar systems highly predictability. Table 1: Locations of weather stations.
The quantity and quality of solar irradiance is of great importance as these can determine the possibilities and shortcomings that solar systems have in a region. In the scope of characterising the solar irradiance at the earth's surface, two important parameters are necessary, the instantaneous sky clearness index, kd, and the probability of persistence, POP day. The instantaneous sky clearness index is the ratio of the received irradiance at the earth surface to the extraterrestrial radiation. This index captures the instantaneous fluctuations of the solar irradiance and indicates the quantitative amount of solar irradiance the surface of the earth receives [4–5]. The quantity index, kday, is defined as the ratio between the daily received solar radiation to the daily extraterrestrial radiation. Consequently, the higher the quantity index the higher the amount of daily solar radiation available. Additionally, the quality of solar irradiance during a day can be found using a probabilistic approach. Firstly, an array Δkd is calculated containing the difference between consecutive values of clearness index, kday, within a day. Accordingly, the quality index, POP day for the day can be estimated by finding the probability of the Δkd values being equal to zero. Therefore, the higher the value of POP day for a day the lower the fluctuations to appear during that day. As a result, each day a pair with the daily value of the clearness index, kday and the probability of persistence, POP day is defined. The daily solar irradiance can be represented on a two-dimensional plot, where the “x” and “y” axes are the daily values of kd and POP day respectively. The plot of kday against POP day is divided into 9 classes, as shown in Fig. 1. Figure 1: Plot of daily solar irradiance characterisation and classification classes.
With reference to Fig. 1, the x-axis is divided into three sections based on the quantity of solar irradiance. Particularly they are divided into high quantity (classes 1, 4 and 7 i.e. 0.6 < kd), medium quantity (classes 2, 5 and 8 i.e. 0.3 < kd < 0.6) and low quantity (classes 3, 6 and 9 i.e. kd < 0.3). The y-axis, depicts the quality of solar irradiance and is similarly divided into 3 sections based on the quality of the daily sky conditions. Those are: clear or totally overcast sky with no or few fluctuations (classes 1, 2 and 3 i.e. 0.9 < POPd), relatively small and infrequent fluctuations (classes 4, 5, and 6 i.e. 0.7 < POPd < 0.9) and large and frequent fluctuations (classes 7, 8 and 9 i.e. 0.5 < POPd < 0.7). Typical solar irradiance profiles of each class can be found in Fig. 2. Figure 2: Typical profiles of daily solar irradiance plots for each class.
The solar irradiance data for this work were obtained from the “World Radiation Monitoring Center” and the “National Renewable Energy Laboratory (NREL)” [6]. The weather stations are located at latitudes between the 23rd and 27th parallel north, as in Table 1, covering the range of latitudes Qatar lies within. The resolution of the data is 1 minute and 4 years of data are used for the analysis. The extraterrestrial irradiance data are extracted from the online “Solar Calculator SOLPOS” of NREL. The methodology described here is global and to illustrate its functionality we will use Cyprus as a case study. The weather station in Cyprus is located at the southernmost part of the island (34.597N, 32.987E) and is operated by the PV Laboratory of the University of Cyprus. The characterisation of the daily sky conditions in Cyprus for 4 years showed that the highest concentration of days in Cyprus is found in classes 1, 4 and 5, where 321 days (88%) of a year experience high or medium quantity solar irradiance with rare and infrequent solar fluctuations. Moreover, from Table 2, it can be noted that 74.8%, are days experiencing high solar irradiation compared to 2.7% of days with low quantity solar irradiance. Also the quality of solar irradiance in Cyprus is very high with 52.5% of the examined days experiencing solar irradiance with small and very infrequent fluctuations (classes 1, 2 and 3). Table 2: Daily solar irradiance percentile distribution into the 9 classes for Cyprus.
Additionally, examining Fig. 3 it can be clearly noted that the distribution of days over the evaluation period in Cyprus exhibit high periodicity. This can also be seen from centroid of the distribution points for all 4 years. The centroid values of kday and POPday are very similar throughout the years, located around 0.87 for POPday and 0.64 for kday. Figure 3: Daily solar irradiance distribution in Cyprus for the years 2010–2014.
Moreover, Table 3 shows the distribution of the solar irradiation measured at the SOV weather station located in Saudi Arabia (24.91N, 46.41E) for 4 years. As in the case of Cyprus the highest concentration of days in Saudi Arabia is found in classes 1, 4 and 5 representing 92% of a year or 336 days. However, the concentrations of days in SOV is higher for class 1 compared to Cyprus (66.3 and 48.4% respectively). This reveals that the prevailing weather condition in that region is clear sky thus high quantity and quality of solar irradiance. Table 3: Daily solar irradiance percentile distribution into the 9 classes for SOV Weather Station.
Additionally, a close look at Fig. 4 reveals the repeatability and periodicity of patterns existing in the region. From a visual inspection it can be clearly seen that the distribution of data points is very similar for each year and also many data points through the years are overlapping. This can also be noticed from the centroids of the distributed data. The centroids for each year are very closely located on the plot and their mean value is 0.91 POP day and 0.68 for kday. Figure 4: Daily solar irradiance distribution at SOV weather station for the years 1999–2002.
These facts show that grid connected solar systems in Cyprus and the SOV region (24th parallel north) produce and deliver quality energy to the grid, without compromising the efficiency and quality of energy. Finally, the analysis reveals that the solar irradiance in both cases is highly predictable as repeating patterns are identified comparing all 4 years of data. This leads to the conclusion that the grid operators can rely on solar systems without compromising the quality and security of the supplied electricity in situations with higher penetration of grid-connected solar systems. Acknowledgment: The authors gratefully acknowledge the “World Radiation Monitoring Centre-Baseline Surface Radiation Network” for supplying the weather data from Saudi Arabia.
References
[1] M. A. Ortega-Vazquez and D. S. Kirschen, “Estimating the spinning reserve requirements in systems with significant wind power generation penetration,” IEEE Trans. Power Syst., vol. 24, no. 1, pp. 114–124, 2009.
[2] N. Amjady and F. Keynia, “A new spinning reserve requirement forecast method for deregulated electricity markets,” Appl. Energy, vol. 87, no. 6, pp. 1870–1879, 2010.
[3] M. Black and G. Strbac, “Value of bulk energy storage for managing wind power fluctuations,” IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 197–205, 2007.
[4] B. O. Kang and K. Tam, “New and improved methods to estimate day-ahead quantity and quality of solar irradiance,” Appl. Energy, vol. 137, pp. 240–249, 2015.
[5] B. O. Kang and K.-S. Tam, “A new characterization and classification method for daily sky conditions based on ground-based solar irradiance measurement data,” Sol. Energy, vol. 94, pp. 102–118, Aug. 2013.
[6] National Renewable Energy Laboratory, “SOLAR and LUNAR POSITION CALCULATORS.” [Online]. Available: http://www.nrel.gov/midc/solpos/.
-