- Home
- Conference Proceedings
- Qatar Foundation Annual Research Conference Proceedings
- Conference Proceeding
Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1
- Conference date: 22-23 Mar 2016
- Location: Qatar National Convention Center (QNCC), Doha, Qatar
- Volume number: 2016
- Published: 21 March 2016
81 - 100 of 656 results
-
-
CFD Simulations of Abnormal Flow in Horizontal Pipes for Offshore Hydrocarbon Transport
Authors: Ibraheem Adetunji Adeoti, Mohammad Dadashzadeh and Mohmmad A. RahmanIntroduction: Industrial pipelines for multiphase transportation can result in unstable flows which often cause major operational problems. Due to liquid wave growth and phase interactions (hydrodynamic slugs), liquid arriving in larger, intermittent chunks may cause flow instabilities in pipelines. At an increased air volumetric flow rate, the surface wave amplitudes become larger to the pipe/conduit and wave forms frothy slug where it touches the wall of the pipe. When the slugs travel at a velocity higher than average liquid velocity, it can cause severe vibration that could reduce the integrity of or damage equipment. In order to tackle the problems associated with slug flows, there is a clear need to better understand the multiphase flow leading to various flow phenomenon in the pipelines. The multiphase flows are characterized by flow patterns or regimes that define a particular distribution of phase volume fraction in pipeline.
While there are several numerical models characterized the development and evolution of slugs and slug flows, studies which describe the stress analysis of these slug flows and their effects are scarce. This study compares two CFD codes (ANSYS CFX and FLUENT) in slug development in jumper and the stress analysis of slug movement in jumper. As well, the effects of flow parameters such as fluid superficial velocity, fluid density ratio, and viscosity on slug were investigated.
The model considered in the present study is based on a quasi-3D formulation where the governing equations are based on volume averaging and ensemble averaging of Navier-Stokes equation. In present study, proposed benchmark relies on focusing on two CFD tools, FLUNT and CFX, to simulate surface instabilities and slugs on stratified flow in a horizontal channel considering slip, surface tension, and frictional momentum transfer between the phases (liquid and gas).
FLUENT Set-up The setup mimics the modified version of the experimental study previously investigated by Vallee and Hohne (2007), the flow channel with rectangular cross-section was modelled using Computational Fluid Dynamics (CFD) package, FLUENT code. The dimension of the model are 4000 × 300 × 30 mm3 (length × height × width). The simulation was performed by a grid consists of 4 × 462 hexahedral elements and 4 × 46152 nodes applying a quasi-3D model that consider the wall effect of channel in a 2D model. The volume-of-fluid (VOF) model is used for modeling the fluid domain with air and water. This model is well suited for separated flows with no mixing at the interface. The fluid interface shape is represented by geometric reconstruction scheme. For the two-phase flow, 1.0–1.5 m/s superficial velocity of water and 5.0–11.5 m/s of air were chosen for the CFD calculations. The model inlet was divided into two parts: in the lower half of the inlet cross–section, water was injected and in the upper half air. An initial water level of 50 mm was assumed for the entire model length. As well, initial inlet velocity 1 m/s was considered for water and air, and the velocity of air was increased gradually to simulate different scenarios until final velocity 11.5 m/s considered in this work. The reference pressure considered during the simulation was 1 bar and surface tension of 0.072 N/m. A hydrostatic pressure was also assumed for the liquid phase. For surface instability generation with subsequent slugs, the interfacial momentum exchange and turbulent parameters had to be modeled accurately (Razavi and Namin). In this regard, turbulent model of K-ε model was chosen as the viscosity that is able to model surface instabilities and turbulence of slug flow. Solution for calculating 15s of simulation time on 6-processors lasted for 48 hours. Selected discretization schemes were PRESTO for pressure, Geo-Reconstruction for volume fraction, and First Order Upwind for other cases. Variable time step between 10–6 and 10–3 was appropriate steps for the simulation.
CFX Set-up Building the geometry in ICEM, the mesh was then imported to the ANSYS CFX-Pre in order to define the simulation parameters. Air and water were defined as the two gaseous and liquid phase and using the expressions, the height of water is set to 0.05 (half of the area section) through the entire domain. According to (Frank, 2005), Shear Stress Transport (SST) turbulence model was selected for the simulation and the term “Production and Dissipation” was added to the equations. Surface tension coefficient was set to the value of 0.072 (N/m), interface length scale to 1 (mm), and drag coefficient to 0.44 ( − ) (Frank, 2005). The mixture model was chosen for the interphase transfer. The inflow type was chosen as ‘inlet” and the fractional intensity was set to the value of 0.05 with the eddy length scale equal to the liquid height at the upstream (Razavi & Namin, 2011). The mass flow rate of air and water were set to the values of 0.074 (kg/s) and 7.83 (kg/s), respectively. Several simulations were conducted in order to improve the simulation results and due to the blockage of the outlet in the previous runs, the outflow boundary type was set to “opening” instead of “outlet” with a pressure controlled and medium intensity (5%) turbulence in the boundary details.
The liquid and gaseous phases were defined based on their volume fraction in downstream at outflow. The wall boundary type was set to “wall” and for both phases “no slip wall” and “smooth wall” options were assigned to the mass and momentum and the wall roughness, respectively (Hohne, 2009). The analysis type was set to transient with the total simulation time of 8 (s) and time steps of 0.001 (s), according to the similar study conducted by (Razavi & Namin, 2011). In the solver control, a second order backward Eulerian approach was chosen with high resolution turbulence. Due to the instability and fatal errors in the previous simulations, the minimum and maximum number of loops were set to 1 and 200 (due to divergence problem), respectively with the convergence criteria of 1 × 10–4.
Figure 1: Abnormal flow simulations (L = 4 m, D = 0.3m, Ug = 9 m/s and Ul = 1 m/s). References: S.Y. Razavi and M. M. Namin. Numerical Model of Slug Development on Horizontal Two-phase Flow, Proc. of Int. Conf. on Recent Trends in Transportation, Environmental and Civil Engineering 2011.
A. Ashrafian, J-C. Barbier and S.T. Johansen. Quasi-3D Modeling of Two-Phase Slug Flow in Pipes. 9th International conference on CFD in the minerals and process industries CSIRO, Melbourne, Australia, 2012.
T. Frank. 2005. Numerical Simulation of Slug Flow regime for an air-water two-phase flow in horizontal pipes, The 11th International Topical Meeting on Nuclear Thermal Hydrualics (NURETH-11), Avignon, France, 2006.
R.E.M. Morales et al. 2013. A comprehensive Analysis on Gas-Liquid Slug Flows in Horizontal Pipes. Offshore Technology Conference, Brazil. OTC 24437.
D. Duraivelan, Y. Dai and M. Agrawal 2013. CFD Modeling of Bubbly, Slug, and Annular Flow Regimes in Vertical Pipelines. Offshore Technology Conference. OTC 24245.
-
-
-
Implementation of Rooftop Solar in Qatar: Lessons Learnt from SolarCity Business and Finance Models in the U.S.
Authors: Mohamed Atta ElManan Alhaj and Dr Alex AmatoQatar is a country with huge potential for solar energy applications due to its reasonably high global horizontal radiation value. Further, solar energy can be used to reduce the demand on fossil-fuel generated electricity hence creating more revenues for Qatar from its natural gas resources. Currently, the residential sector consumes 57% of the total electricity consumption in Qatar. Moreover, Qatar has one of the highest electricity consumption per capita rates in the world; >15,000 kWh/year. Subsequently, at an individual level, the carbon footprint is high. It is important that we find cost effective ways to reduce dependence on fossil-fuel generated electricity as a step towards sustainable energy generation and use. Rooftop solar in the residential sector is identified a promising solution for Qatar to be sustainable in terms of energy use. The concept of using solar PV systems in homes is not a new one and has been applied in many countries. The private sector, in particular, has done a very good job in increasing the deployment of rooftop solar. However, at a corporate level, solar PV companies have to deal with a lot of economic and legal challenges. The main challenges are affordable financing and a resilient business model. One company that has managed to overcome these two challenges and become a pioneer at installing rooftop solar systems at a nationwide scale is SolarCity in the U.S. SolarCity was set up in 2006 and by 2014 it became the largest supplier and installer of rooftop solar systems in the U.S., accounted alone for one third of the residential solar market in the U.S. and had a cumulative installed capacity of 650 MW. A lot of lessons and strategies can be learnt from SolarCity's successful experience which can be used in Qatar. This research, hence, highlights the major factors behind SolarCity success and how Qatar can benefit from it in implementing rooftop solar at a large scale.
The United States is one of the biggest markets and innovations pools for the global solar industry. In fact, by the end of 2014, the U.S had the third largest installed capacity of PV (photovoltaics) globally; 6.2 GW (Brunisholz 2014). In 2014, the U.S. solar industry grew by 34% over the 2013 growth rate (SEIA 2014). This growth was mainly driven by the PV residential and utility sectors which both grew by 51% and 38% respectively in 2014 (SEIA 2014).
The growth and development of the U.S solar PV industry has been led by many private and public firms, the most famous among which is SolarCity. SolarCity was founded in 2006 by Elon Musk (chairman), Lyndon Rive (CEO) and Peter Rive (CTO). It is a private enterprise that sells and leases solar PV systems for homes, government agencies, universities and many other types of customers. SolarCity is now America's largest solar power provider employing more than 10,000 employees and serving nearly 217,000 customers in 18 states in the U.S. By the end of the first quarter of 2014, SolarCity has installed 26% of all PV installations in the U.S.
SolarCity's operation strategy is very simple and yet innovative. The company is based in San Mateo, California but its operations are carried by local centers in different states in the U.S. Membership in SolarCity's program starts with the customer checking through SolarCity's website whether their house is eligible for a solar installation; by considering the state which they live in and the average electricity bill. The customer contacts SolarCity's representatives in their area and schedules and site visit. During the site visit, SolarCity's engineers will assess the suitability of the house for a solar installation, the electricity consumption of the house, the average savings expected from the solar system and the financing plan. The customer, once satisfied, signs the contract with SolarCity. Usually, the whole process takes around 2 months from the first call to the time the solar system is installed on the house.
SolarCity provides three payments options for its customers; PPA (power purchase agreement), lease and My power. PPA and lease plans allow the customer to rent (or lease) the solar PV system from SolarCity for a given period (usually 20 years) and make monthly payments. However, there is a small difference between both plans in terms of how payments are made. My power scheme is an ownership program that allows the customer to purchase the solar PV system by making annual payments over a given period, at the end of which they own the solar system and its subsequent benefits (like state rebates and tax incentives). The solar lease plan is the most popular and has been chosen by over 50,000 customers (SolarCity 2015).
Financing of rooftop solar is the most difficult part in the process of solar energy deployment, especially in the residential sector. Currently, the U.S. solar industry operates on a third-party-ownership (TPO) model. In this business model, large financial institutions like banks provide the major funding for solar projects. The TPO model has been working well so far because it gives customers the opportunity to use solar electricity without baring the heavy capital costs.
In the broad sense, solar electricity providers use one of two methods to finance their projects: Bonding: Bonding refers to the process of taking loans from large finance institutions which have the necessary liquidity to fund solar electricity projects. In finance terms; it is “the process of securitizing debt and then issuing it into the capital markets via bonds” (Travis Lowder and Michael Mendelsohn 2013). The debt provider (also known as a tax-equity holder because that provider acquires all the tax incentives from the project they are funding) also receives an interest rate from their contribution to the project; usually 5–7% in solar projects. This form of financing is the most commonly used in the solar industry. However, the major drawback of this scheme is that it largely reduces the profit margin of solar companies by taking all of their tax credits. In addition this scheme is a highly complex and illiquid one and many experts believe that it can not meet the escalating demand of the solar energy market in the U.S (Travis Lowder and Michael Mendelsohn 2013). Securitization: This is a relatively new term in the U.S solar industry and has only recently been used. Securitization is defined as “the process of transforming illiquid assesst (such as cash flows from a solar lease) into tradeable instruments” (Travis Lowder and Michael Mendelsohn 2013). Securitization is a financial mechanism that allows solar companies (whether they are suppliers or installers) to have more control over the funding of their projects. Essentially, solar companies will issue asset backed notes (or securities) in the marketplace for investors to buy. An investor who purchases such an asset will be entitled to a portion of the profits generated from that asset (e.g cash flows from solar leases). This proves to have two main advantages; provide a source of low-cost financing and raise significant capital for solar companies (Travis Lowder and Michael Mendelsohn 2013, T. Alafita and J.M. Pearce 2014).
Being sustainable (in finance terms) is of high importance to U.S. solar companies especially because the ITC, which was the main driver for the growth of the solar industry, is expected to reduce from 30% to 10% by 2017 (Travis Lowder and Michael Mendelsohn 2013). This leads us to the first success factor of SolarCity which was completing the first ever securitization of rooftop solar asset in the U.S solar market in November 2013 (Ucilia Wang 2013). This marked a huge transition in the solar PV financing market. SolarCity, at that time, sold $54.23 million worth of notes with a 4.8% interest rates. In October 2014, SolarCity further developed their securitization model and implemented the first ever direct public offering (DPO) of solar bonds (shares in SolarCity's funding) allowing normal individuals and businesses to get attractive returns on their investments in solar energy (Canales 2014). The value of the solar bonds (or shares) for 2014 was $200 million and could be purchased for a little as $1000 per bond with an interest rate of up to 4%. The cash flow to pay for SolarCity's bonds comes from customers' payments in their solar leases or PPA's 20-year contracts. The second success factor in SolarCity's business model is also related to financing but concerns the other competitors in the solar market. The U.S. solar market has over 5000 companies but most of them will go out of business as Lyndon Rive, SolarCity's CEO, said (Margaret Rhodes 2012). This is because the majority of these competitors, due to limited funding options, only focus one part of the solar industry chain (such as only supplying equipment or only installation). Few companies actually provide the full service of providing the equipment, installing and maintenance. Among these are SolarCity and Vivnet Solar. Both of these companies follow the TPO model and have been doing very well indeed; they are the only two national completely vertically integrated residential solar companies (Green Tech Media 2014). Being vertically integrated means working in the whole solar PV supply and operations chain.
Vertical integration benefits solar companies in two ways; it increases the profit margin and gives them “visibility into the strategies of their competitors” (Green Tech Media 2014). In 2013, SolarCity acquired Zep Solar, a solar mounting startup which was for years a major supplier of equipment for SolarCity (Eric Wesoff 2014). Zep Solar was known for its innovative grooved frame that makes mounting of solar panels much faster. Through the use of Zep Solar's technology, SolarCity was able to reduce the installation time from 2–3 days to less than one day. In addition, in 2014, SolarCity acquired Silevo, a solar technology and manufacturing company whose solar panels had a good combination of energy output and low cost. In fact, SolarCity is planning to take vertical integration in the solar industry to next levels when it announced in 2014 plans to build the U.S largest solar cells manufacturing facility in the state of New York with a capacity of more than 1 GW. SolarCity views vertical integration as the best way to cut down operation cost and reduce dependence on government subsidies. This explains why in the “sunny” states like California, SolarCity is able to sell electricity at a price less than the utility but at the same time maintain profits.
A SolarCity-inspired model that can help Qatar make a transition towards mass adoption of residential rooftop solar must have five components: Government policies and agencies that encourage (through incentives) citizens to invest in solar electricity. Improve the public awareness about the benefits and technology of solar electricity. Significant investment in R&D to build local knowledge, capacity and products within the solar PV supply and operations chain. An advanced smart grid that improves solar electricity integration. Customized and innovative financial instruments and models (such as Islamic finance) which benefit from global efforts but at the same time address local challenges.
Further research in this topic requires formulating innovative business and finance models that provide an affordable and reliable source of liquidity for solar firms in order to drive the rooftop solar industry in Qatar forwards. Particularly, we need to focus on how Islamic banks and Islamic finance can support the solar industry in Qatar. We need to ensure such measures reduce the risk from the lender and borrower's perspectives and that there is a high level of confidence on solar energy technologies as a worthy investment sector.
-
-
-
Modeling the Impact of Weather Conditions on the Generation Output of PV-DGs
Authors: Islam Safak Bayram and Hamed Mohsenian-RadPhotovoltaic distributed generation (PV-DG) systems are one of the fastest-growing types of renewable energy resources being integrated worldwide onto distribution networks. As the price of solar cells continues to decrease, residential and utility-scale PV installations are becoming popular energy options in the United States and other Western countries. Similarly, in line with the National Vision 2030, Qatar is aiming to embrace solar technology by 20% to meet its growing demand and reduce carbon emissions. The short-term goal for KAHRAMAA Utility in Qatar is to reach 10 MW solar generation in the next years. Qatar resides in the Arabian Peninsula and is blessed with abundant solar resources. For instance, the Global Horizontal Irradiance for Qatar is measured as 2140 kWh/m2/year in 2012, which is one of the highest in the world. However, local weather conditions significantly degrade the performance of the PV output. Some of the major issues include: (1) the temperature on PV panels is significantly higher than the ambient temperature. This affects the performance of the power electronics devices that are attached to the PV panels, such as inverters, and also the PV output due to the stress on the materials; (2) Qatar is prone to frequent foggy weather during the Winter. Thus often leads to sudden drops in the PV outputs; (3) PV panels often need cleaning in Qatar due to soiling; and (4) during winter months, the humidity increases significantly in Qatar, and the scheduling of anti-dust cleaning as well as considering the impact of late cleaning become more important. The above region-specific issues further emphasize the challenges in integrating PV-DGs in Qatar and the potential need for modeling the impacts of weather conditions on the generation out of PV-DGs on the distribution network. The main goals are to devise probability distribution functions for overloading of transformers and cables and failures of different system components. The outcome of this work will be used to (1) quantify the costs of poor power quality on customer premises and system elements; (2) compute the electric system average interruption duration index (SAIDI) and the system average interruption frequency index (SAIFI); and (3) create rare event techniques to simulate the adverse impacts of PV integration. Moreover, the developed model can be used to find the relationship between the energy storage size, which are likely to assist PV integration at the distribution network, and the unexpected weather events.
-
-
-
Anthropogenic Radioisotopes in the Topsoil of Qatar: Is it Something to Worry About?
More Less1. Background
Depleted uranium (DU) has been used extensively during weapons testing and recent military conflicts. All three main isotopes of U (235U, 236U, 238U) are radioactive. The firing of depleted uranium (DU) weapons during conflicts and military testing has resulted in the deposition of DU in a variety of sand-rich environments. Iraq, a near neighbor to Qatar, has received extensive (400 tons) DU contamination from the two wars in 1991 and 2003 (Shomar et al., 2013). Radioactive fallout from past accidental releases of radioisotopes during ground nuclear tests has contaminated the globe with radioactive materials. Most of these radio-contaminants are fission products of uranium and plutonium. Among these, 90Sr, 137Cs, 235U, 238U, 238Pu, 239Pu, and 240Pu have been identified in some soils around the world. Therefore, radioisotopes represent long-term health and environmental problems. Knowledge of the concentrations of these radioisotopes and their isotopic compositions in soil provide valuable information concerning nuclear activities in the affected regions.
2. Objectives
The objectives of this work are to (1) determine the occurrence and distribution of the anthropogenic radioisotopes 90Sr, 137Cs, 235U, 236U, 238U, 238Pu, 239Pu, and 240Pu in the topsoil of Qatar; (2) establish a baseline in the soil in Qatar before commissioning the installation of various nuclear machinery in the area; (3) map and assess the fallout radioisotopes of concern in Qatar; and (4) trace the origin of these contaminants.
3. Methodology
3.1. Instrumentation
The measurements were performed using triple quadrupole collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS, Agilent 8800), which has been developed recently by Agilent Technologies (Fernandez et al., 2015). The CRC-ICP-MS/MS combines two quadrupole mass filters, Q1 and Q2, before and after the Octopole Reaction System (ORS3) cell, respectively, in a tandem mass spectrometer (MS-MS) configuration. The normal mode of operation of the 8800 is MS-MS mode, where the first quadrupole works as a unit mass filter, restricting the ions entering the reaction cell to a single mass to charge ratio (m/z) at any given time. In this way, ions entering the collision reaction cell are precisely controlled, resulting in the ability to exactly control the reaction chemistry occurring in the cell, even if the sample composition changes. A high performance sample introduction system (AridusTM-II, CETAC) that incorporates a low-flow fluoropolymer nebulizer was coupled to the CRC-ICP-MS/MS instrument. The spectrometer was optimized to provide the highest ion counts of 88Sr, 133Cs, or 238U ions. Argon and reactive gases used in the experiments were grade five (99.999%). The measurements of pure Sr, Cs, and Pu fractions extracted from soil samples were performed using CRC-ICP-MS/MS in single MS mode. Direct measurements of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu in leached solutions were conducted on the CRC-ICP-MS/MS in MS-MS mode using reactive gases for isobaric separation.
3.2. Quality control/quality assurance (QC/QA)
In order to check the feasibility of the proposed analytical techniques, a set of standard reference materials and proficiency test samples were measured with CRC-ICP-MS/MS as validation experiments.
3.3. Collection of soil and sediment samples and sampling strategy
A systematic sampling plan was followed in the collection of the soil samples in Qatar. Sampling points are located at regular intervals on a 1:10000 square grid. The regular spacing on this grid is 10 km, resulting in approximately 132 soil samples and coastal sediment samples from locations distributed across the country. Sampling locations were demarcated using a Global Positioning System (GPS) and were then positioned in the maps using a Geographic Information System (GIS). The Geostatistics tool in ArcGIS was used to interpolate the concentration and distribution of the radioisotopes in the top soil of Qatar.
3.4. Leaching of Sr, Cs, or Pu from large soil samples
Because of the extremely low levels of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu in the environmental soil samples, it was necessary to bulk sample extracts to ensure that sufficient analyte is present for an accurate and precise analysis. For this purpose, we applied the procedure developed by Maxwell et al. (2013) with slight modification. The radioisotopes were extracted from1000 g of the Qatari soil samples by concentrated nitric and hydrochloric acids.
4. Results and Discussion
The developed methods were applied to measure the 90Sr, 137Cs, 235U, 236U, 238U, 238Pu, 239Pu, and 240Pu concentrations in the topsoil samples collected from the 132 sites in Qatar. The concentrations of 90Sr in the collected Qatari soil samples vary from 0.18–0.99 fg/g (1.00–5.49 Bq/kg) with a mean value of 0.606 fg/g (3.364 Bq/kg) and a median value of 0.610 fg/g (3.390 Bq/kg). The average atomic concentrations and equivalent activities of 90Sr in the Qatari topsoil samples are presented in Table 1. A comparison with 90Sr activities in other countries are presented in Table 1. The concentrations of 137Cs vary from 0.030–1.210 fg/g (0.098–3.993 Bq/kg) with a mean value of 0.619 fg/g (2.038 Bq/kg) and a median value of 0.620 fg/g (2.051 Bq/kg) (Table 2). The corresponding distribution map for the 137Cs activities is given in Fig. 1. The U concentrations range from 0.05 to 4.7 mg/kg and the 235U/238U isotopic signatures are in the range 0.007–0.008, i.e. comparable to the isotopic ratio in natural uranium (NU). The concentrations of 238Pu vary from < 0.026–0.058 fg/g ( < 0.016–0.027 Bq/kg) with a mean value of 0.034 fg/g (0.0195 Bq/kg) and a median value of 0.032 fg/g (0.0195 Bq/kg). The concentrations of 239Pu fall in the range 18.31–113.85 fg/g (0.042–0.261 Bq/kg) with a mean value of 65.59 fg/g (0.150 Bq/kg) and a median value of 66.16 fg/g (0.152 Bq/kg). The concentrations of 240Pu fall in the range 3.12–30.35 fg/g (0.027–0.258 Bq/kg) with a mean value of 12.06 fg/g (0.103 Bq/kg) and a median value of 10.78 fg/g (0.092 Bq/kg). The combined concentrations of 239+240Pu in environmental soil samples from Qatar and other countries are presented in in Table 3. A thematic maps were built using the Geographic Information System (GIS) software. The concentration and distribution trends of 90Sr are 137Cs, were found to be similar. On the other hand, The concentration and distribution trends of U are Pu were found to be similar. The results showed that residential areas, including the capital Doha, had the lowest concentrations of the radioisotopes in the country, while the western part of Qatar exhibited the highest values. More importantly, due to the low concentration of organic matter (OM) in Qatari soil, the very limited P-fertilization, the alkaline nature of the soil (pH 8), and the low Fe/Mn content, the U and Pu concentrations in the soil are slightly low compared to those of 90Sr and 137Cs. The isotopic and activity concentration ratios of 238Pu/239Pu, 240Pu/239Pu, and 238Pu/239+240Pu can be used to identify the source of these materials. The mean238Pu/239Pu isotope ratio in Qatari soils is (3.674 ± 1.053) × 10− 4 (Table 4). The 238Pu/239Pu isotope ratio from the reported global fallout and Chernobyl fallout are 1.77 × 10− 4 and 4.3 × 10− 3, respectively. The mean isotope ratio of 240Pu/239Pu in Qatari soils is 0.179 ± 0.035. The mean 240Pu/239Pu isotope ratios from the reported global and Chernobyl fallouts are 0.18–0.19 and 0.34–0.57, respectively. The average isotopic and activity ratios of 238Pu/239,240Pu in Qatari soils are (3.061 ± 0.879) × 10− 4 and 0.052 ± 0.004, respectively. The activity ratio 238Pu/239+240Pu in releases from nuclear fuel reprocessing plants, nuclear tests, nuclear weapons, and the Chernobyl fallout are approximately 0.25, 0.026, 0.014, and 0.47, respectively, (Bu, et al., 2015). Therefore, it is difficult to identify the source of the Pu, but it may be due to the contribution of more than one source. The most probable sources are both the Chernobyl fallout of Pu isotopes and several decades of fallout plutonium accumulation due to nuclear weapons testing.
5. Conclusions
In general, no anomalous results were recorded. The concentrations of U observed in soils collected throughout the State of Qatar were well within the normal background levels. 235U/238U activity ratios do not indicate DU contamination, within statistical detectability, anywhere in the country. The data confirm that the source of the 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu is the global fallout. The concentrations of these anthropogenic radioisotopes are extremely low and do not pose threats to the environment or to human health.
6. Novelty
New data bank was established for (1) the concentrations of the radioisotopes 90Sr, 137Cs, 235U, 238U, 238Pu, 239Pu, and 240Pu in topsoil of Qatar, and (2) the isotopes ratios of U (235U/238U) and Pu (240Pu/239Pu, 238Pu/239Pu, and 238Pu/239, 240Pu).
7. Recommendations
This work provides a basis for monitoring the concentration of anthropogenic radioisotopes, which may be affected by events connected with any nuclear activity and/or accidents occurring in the future. It is recommended to establish a monitoring program to provide a rapid warning system in the event of excessive radioisotopes production and fallout in the region. In particular, it would be especially advisable to continue isotopic monitoring of the most sensitive regions of Qatar on an approximately yearly basis.
Acknowledgment
This article was made possible by NPRP award [NPRP4-1105-1-173 and NPRP08-187-1-034] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author.
-
-
-
Combustion Characteristics and Emissions of a Direct-Injection Diesel Engine Fueled with GTL Fuel Blends
Authors: Samer F. Ahmed, Abdellatif M. Sadiq, Mohamed T. Gergawy and Mohamed A. BassionyI. Introduction
Gas to Liquids (GTL) is one of clean alternative fuels which loosely defined terms that is generally used to describe the chemical conversion of natural gas to some type of liquid products. As such, it excludes the production of liquefied natural gas (LNG), but includes the conversion of gas to methanol, liquid fuels, and petrochemicals, being the most common applications. In other words, Gas to liquids (GTL) technology is used to convert a carbon containing feedstock such as natural gas, to synthetic diesel fuels and further developed by oil companies. Fewer studies investigated the use of GTL diesel with the existing diesel engines to study the effect of using this new alternative fuel on the efficiency and emissions in these engines. Hence, the objectives of this study are to investigate the behavior of the GTL – diesel fuel blends in context of different combustion characteristics, engine performance and emissions. It is expected that the outcomes of this study will shed further light on GTL diesel fuel as a clean alternative fuel.
II. Experimental Methods
The experiments were carried out on a T85D single cylinder, four stoke, water cooled, direct injection, compression ignition engine attached to DIDACTA ITALIA engine test bed. An electric dynamometer with motor and a load cell was coupled to engine. Engine specifications are shown in Table 1. Two fuel tanks were assembled in the test bed; one tank was used for convention diesel fuel and the other was used for GTL Diesel. The properties of the used fuel are mentioned in Table 2. It can be observed that the GTL fuel has a lower density and viscosity and high cetane number in comparison with conventional diesel fuel as demonstrated in Table. 2. All these properties are in favor of improving fuel evaporation and mixing with air, which lead to better combustion characteristics.
The engine test bed and the measuring devices are shown schematically in Fig. 1. The in-cylinder pressure was measured by using a water cooled piezoelectric pressure transducer AVL QH 33D which was mounted flush at cylinder head and connected via AVL charge amplifier. The output signal was displayed on Instek GDS-3152 Digital Storage Oscilloscope with 150 MHz sampling rate. Then, the data was transferred to a laptop which saved for further analysis. The crank shaft position was measured using a digital shaft encoder.
The engine speed was measured by using a speed tachometer that used the pulse counting principle to detect the crank shaft speed, while the fuel flow rate was measured by using a calibrated burette and a stop watch. The engine torque was measured by using a load cell. Engine NOx emission was measured by a long life electrochemical sensor at NOVA-7465PK portable engine exhaust emission analyzer. This electrochemical sensor has anodes, cathodes and suitable electrolyte sealed inside it which, when exposed to gasses, produces a small output current. This output is directly proportionally to the amount of NO gas in the sample. A Pre-Amplifier board directly mounted on the top of the sensor boosts the small signal and converts it to an output of 1 mV per PPM. This output is then sent the main microprocessor board, corrected for the calibration then displayed on the LCD display meter. The resolution of the NOx sensor is ± 1 PPM. The test rig is also equipped with a type-K thermocouples to measure air inlet manifold, engine cooling temperatures and exhaust temperatures which were mounted at relevant points. Normal engine test bed safety features are also included. Atmospheric conditions (temperature and pressure) were monitored during the tests.
III. Results and Discussion
In this section, a comparison between the new manifold designs and the standard manifold of the engine in terms of engine performance and emissions is presented. A number of experiments have been conducted when the engine runs at different loads and different speeds. In addition, the results of using conventional diesel, GTL and 50%–50% blends of both fuels will be presented to show the fuel effect on the above mentioned parameters.
A. Engine Performance
Figure 2. Shows the effect of in cylinder pressure change with crank angle for the diesel at 1700 rpm with variable loads fuels. It was obvious when load increases, the pressure increases. The maximum pressure occurs 18.7 ATDC at no load condition. As load increases the combustion duration increases which lead to long the ignition delay period. It can be observed from Fig. 3 that the maximum pressure values of both fuels and their blends are comparable over the whole range of operation. This proves the suitability of the combustion characteristics of GTL fuel and its blends with conventional diesel to be used with the existing engine designs.
One of the important performance parameters of internal combustion engines is Brake thermal efficiency which indicates how energy conversion added by heat is transferred into a net useful output work. The engine brake thermal efficiency, not shown here, increases with increasing of load. In case of variant load constant speed at 1700 rpm operation condition, the efficiency of GTL fuel was slightly lower than conventional diesel and 50%–50% blend with about (1.5%–8%) and (1.3%–7.75%) compared with diesel, respectively. Higher cetane number, Low viscosity and density of GTL fuel properties leads to efficiency degradation compared with diesel fuel. On the other hand, the engine brake thermal efficiency decreases with increasing of speed. In case of constant load variable speed operation condition, the efficiency of GTL fuel was slightly lower than conventional diesel and 50%–50% blend with about (5%–1.7%) and (2%–4%) compared with conventional diesel, respectively.
Figure 4 illustrates that the engine brake specific fuel consumption (BSFC) decreases with increase in load. In addition, it was observed that by using GTL fuel the BSFC decreases by approximately (4.8–17) % and (0.7–6%) compared with GTL and 50%–50% blend. The higher heating value of GTL fuel than conventional diesel improved the BSFC. Besides, as shown in the bellow figure 5. It was observed that GTL fuel had lower BSFC comparable to conventional diesel and 50%–50% blend. It had been found that while speed increases, BSFC decreases. GTL fuel has the lowest BSFC compared with conventional diesel and 50%–50% GTL by approximately average 31.28% and 5.2%, respectively.
B. Engine emissions
Figure 5 shows the version in CO emissions for conventional diesel, GTL and 50%–50% blend at various loads constant speed 1700 rpm. On average, GTL fuel has the lowest CO emissions of about 43% lower than the other tested fuels. It is obvious that the GTL fuel in 50%–50% blended fuel has a significant effect to reduce CO emissions. This is probably due to higher GTL hydrogen to carbon ratio leading to improve the combustion process in addition to the very low aromatic content and higher cetane number in GTL fuel. The variation of CO emission with speed at constant load is displayed in Fig. 5. It shows that a slight decreasing of CO formation whereas the engine speed increases. In general, GTL fuel shows 42% less CO emissions than conventional diesel. The results also demonstrates that 50%–50% blended fuel has a lower CO emissions than conventional diesel by about 24%.
Figure 6 shows the relation between NOx emissions with load variation at constant speed 1700 rpm. The results indicate a gradual increase in NOx emission with load. GTL fuel has the lowest NOx emissions compared with conventional diesel and 50%–50% blends by about 12.8% and 34.6%, respectively. This is considered to be a significant advantage of using GTL fuel. This NOx reduction can be linked with the high cetane number, which reduces ignition delay duration. Figure 6 gives a relation of NOx emission with the engine speed for conventional diesel, GTL and blends at a constant engine load with variation of speed. Overall, NOx emissions decrease as the speed increases. Moreover, it can be observed that the GTL fuel ratio in the blends contributes to greater NOx emission reduction. The 50%–50% GTL blends and the pure GTL fuel give about 4.6% and 10.5% reduction in NOx emissions, respectively, comparing with diesel fuel.
Sulfur content is one of the fuel property that is responsible of sulfur oxides (SOx) emissions which attracted the researchers and engine manufacturers to test a new fuels. In the combustion process, most of Sulphur content in diesel fuel is being oxidized to SO2. These emissions together with exhaust gas from the exhaust system are then mostly vented into the atmosphere where they can be subject to other reactions contributing to the creation of photochemical smog and acid rain. However, some of SO2 in a presence of oxygen can be unfavorably oxidized to SO3. The high temperature of exhaust gas means that SO3 stays in a vapor state and easily combines with after formed in the combustion process. Figure 7 depicts the variation of SO2 exhaust emissions for the tested fuels at constant speed 1700 rpm with load variation. The results show a slight increase of SO2 emissions as the load increases. GTL fuel has a very low SO2 emissions comparing with conventional diesel and 50%–50% blends by approximately 50.1% and 79.6%, respectively.
Figure 7 compares SO2 emissions of the test fueled by conventional diesel, GTL and 50%–50% blends at constant load variable speed operating conditions. On average, GTL fuel gives the lowest emissions, while 50%–50% blended fuel shows about 52.2% reduction. Adding GTL to conventional diesel has a positive effect to enhance the reduction in SO2 emissions. The reduction in SO2 emissions can be explained by the fact that GTL has almost no Sulfur content. Moreover, some SO2 formed during the combustion process combine with hydrocarbons or metals forming sulphates as it can be occurred while using GTL fuel. Metals originate from the products of the engine reciprocating and rubbing abrasion as well as from lubricating oil, fuel (catalyst residue) or erosion of the catalytic emission control system.
IV. Conclusions
In this work, GTL fuel has been used in direct injection diesel engine as a pure fuel and blended with conventional diesel fuel. In cylinder pressure was measured for a wide range of operating conditions to investigate the combustion characteristics of both fuels and their blends. Moreover, engine performance and emissions have been studied in order to evaluate the suitability of GTL fuel as an alternative fuel for engines. The results show that comparable maximum in cylinder pressure for both GTL and diesel fuels. However, the engine efficiency is slightly lower with GTL fuel than diesel fuel. BSFC shows improvements with GTL fuel in comparison with diesel fuel and blends. CO and NOx emissions have reduced significantly when using GTL and 50%–50% blends. SO2 emissions is the lowest reduction due to the fact that the Sulfur content in GTL fuel is close to 0%.
Acknowledgments
This abstract was made possible by a NPRP award [NPRP 7 – 036 – 2 – 018] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
-
-
-
Natural Dyes in Cyanide and Anion Sensing
Authors: Yousef Hijji, Hala Sultan Al Easa and Mahmoud AbdelRasoulCyanide is one of anions of concern due to its high toxicity. It causes death at a low dosage (2.6 mM) and the allowable level should be lower than 1.9 mmolar according to World health Organization (WHO). Cyanide contamination in the environment comes from many sources as metallurgy, gold mining, cyanide fishing, manufacturing acrylonitriles and related polymers, and natural sources. Cyanide also is present in some foods and food products such as cassava, bitter almonds, apple seeds, and some beans. The wide spread of cyanide in these food is of concern and the levels should be monitored and evaluated. In addition cyanide, may leak and get into water bodies or soil accidentally or intentionally, therefore, developing an easy, simple method for its detection is a priority. Many methods have been developed for detection of cyanide and anions such as titrations, distillations, GC-ECD, and spectrophotometrically. Colorimetric methods have been developed which are easy and simple that can give qualitative results visually and quantitatively using absorption or fluorescence spectroscopy. We have tuned into using dyes and natural dyes that are none toxic and available to use as visual (colorimetric) using both absorption and fluorescence techniques. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is obtained from dry rhizomes of Curcuma longa, as the main yellow pigment used as spices, cosmetic and traditional medicine. It has been reported that curcumin also has many pharmacological functions like antioxygenation, antibiosis and antitumor. Despite the fact that extensive colorimetric and related photophysical studies of curcumin has been extensively studied, less study has done on its potentiality in application as a colorimetric and naked eye sensor of biologically and environmentally important anions like fluoride, acetate and phosphate. Some studies reported interaction of curcumin with cyclodextrin based on changes in basicity in acetonitrile which showed its importance in supramolecular chemistry. We herein describe a simple and efficient visible colorimeric cyanide and fluoride ions detection using commercially available curcumin as a receptor. The method could allow application in detection of curcumin, fluoride and cyanide, important chemical and biological species The choice of curcumin as a sensor for anion was mainly based on the fact that curcumin is a phenol and therefore exist in a equilibrium between its protonated and deprotonated forms in relatively basic media. It also contains a carbonyl group succeptable to nucleophilic addition, this will make it have two anion receptors., hydroxyl for hydrogen bonding to associate with basic anions. The carbonyl is areceptor for nucleophilc anions such as cyanide. Due to this reason curcumin can interact differently with different anions and enhance its selectivity based on the sovent choice. It will behave as a chemodosimeter. Acetonitrile, a polar aprotic solvent is is a good media for the analysis, it does not compete with anion in the recognition sites of curcumin. Variation in color changes of curcumin in acetonitrile was done by addition of aliquots of various anions as tetrabutylammonium salts. Addition of fluoride and cyanide ions induced color change from yellow, purple, blue to deep blue with intensity at every level dependent on the fluoride ion concentration. Acetate ion changed the color of solution to light purple, while dihydrogen phosphate induced only a tinge of color enhancement. Chloride, bromide and perchlorate were found to show no effect on the solution of curcumin. In an aquaeous acetonitrile solution the effect was observed only for cyanide only with a clear color change from yellow to red. While other anions had no significant effect. This indicates that the mechanism of interaction is based on nucleophilic addition in the case of cyanide in aqueous media and hydrogen bonding in nonpeotoc solvents. The stoichiometry was determinned to be 1:1 for cyanide and 1:2 for fluoride. The binding constants and detection limits were calculated form the UV-vis absorption titrations. In this presentation the method, structures of dye and complexes, the titration curves, color changes, binding constants and aplication will be discussed.
This work was supported by NPRP grant # NPRP-7 – 495-1-094 from the Qatar National Research Fund (a member of Qatar Foundation).
-
-
-
Effects of Particle Speed on Erosive Wear Behaviour of API X120 Pipeline Steel
Authors: R. A. Shakoor, Paul Okonkwo and A. M. MohamedThe need of transporting petroleum products has resulted in increased erosion of pipeline steel components. For decades, pipeline systems have been used for transporting petroleum products. Carbon steel is commonly used for constructing long-distance pipeline projects due to its mechanical durability and economic aspect. However, the erosion of oil and gas transmission pipeline continues to be a great concern to the petroleum industry because of increasing pipeline maintenance cost and failure. Pipeline steels are often subjected to severe erosion during transportation of petroleum products containing a broad range of erodent particles. The process of transporting petroleum product through the pipeline often results in mechanical removal of the oxide film from the pipeline surface, leaving the surface directly exposed to stress and degradation.
Material removal due to solid particle erosion is believed to be a series of impact events that occur in pipelines and cause extensive damage due to change in the solid-liquid flow direction. Erosion of oil and gas pipeline is a complex phenomenon, characterized by the impacting erodent particles on the pipeline walls due to solid-liquid flow, flow restrictions or change in flow direction. The erosion of steel surface by stream of solid particles can result in high material loss and maintenance costs. Unfortunately, there is no universal model that can effectively predict all erosion situations and development of a reliable and effective model for solid erosion process still remains a challenge. Several attempts have been made to understand the effect of different parameters, such as; temperature, particles size and microstructure of both the impinging and eroding surface on the solid particles erosion process. However, each parameter behaves peculiar to each process and is often complex due to interrelated variables involved. Most of these works were focused on lower carbon steel. The results obtained from these works showed that the target material, temperature, impact angle, particle velocity, shapes and sizes play critical roles in the erosion mechanisms. The angle at which the erodent particles impinge the target material accounts a greater percentage of the erosion damage. Levy studied the solid particle erosion behaviors of 1020 and 1075 low carbon steels using SiC particles as erodent at different impingement angles and speeds. The result showed that the microstructure of the steel materials had a significant influence on the crack growth observed on the eroded steel surfaces. Similarly, Green et al. investigated the erosion mechanisms of low carbon AISI 1050 steel material in relation to the carbon content and microstructure. The result revealed that thermally hardened martensitic structures behave better than the pearlitic steels of the same carbon content under normal temperature range. McCabe also studied the effect of microstructure on the erosion of AISI 1078 and 1050 steels at different angles and speeds using 240 grit A12O3 erodent particles. The result exhibited that the erosion mechanisms assumed a brittle mode with increase in particle velocity. Liebhard and Levy conducted a study on the influence of the shapes of erodent particle on the erosion of 1018 steel. The result showed that angular particles caused higher order of erosion compared to spherical particles. However, the impact of these parameters on the erosion characteristics and mechanisms significantly depend on the material pairs and testing equipment.
In another direction, significant efforts have been made to improve the erosion resistance of the pipeline steel over the years. Results indicated that micro-alloying of carbon steels with small amount of carbide and nitrate forming elements have achieved significant success in the erosion resistance of the carbon steels. Micro-alloying with application-specific elements in combination with judicious process control (e.g. shape-forming and heat-treatment etc.) provided carbon steels of high yield stresses and desirable toughness, for example, high strength low alloy (HSLA) steels. Interestingly, HSLA steels are becoming the material of choice for the projects requiring larger pipeline because of their appreciably low price-to-yield ratio. API X-70 and API X80 have been of the commonly used pipeline grades steels due their ability of withstanding the basic erosion-corrosive environment. However, recently, petroleum industry has witnessed an outstanding demand for higher strength pipeline steels e.g., API X100 in order to combat more stringent environment in terms of erosion-corrosion. Recently, TransCanada, one of the frontiers amongst the steel manufacturing industries has produced API X120 steel which is considered as highest grade pipeline steel available in today's market. The erosion behaviour of this newly developed pipeline material has not yet been investigated in detail. It is of essence to understand the erosion mechanism of this newly developed high strength steel, and under various incidence angle and erodent particle velocities. Conducting detailed analysis on interaction of API X120 steel with various erodent particles (e.g. aluminum oxide) at different velocities would be worthwhile in order to understand the erosion characteristics and mechanisms. Understanding the effects of particle velocity and erosion behavior associated with the API X120 in simulated pipeline environment is necessary to minimize the rate of erosion in the petroleum industry and would be helpful in efficient pipeline material selection and design. This study has been made to facilitate understanding of erosion mechanism and its transition with particle velocity which has a direct relation with the erosion damage.
In this study, dry erosion test was performed in order to investigate the erosion mechanism of API X120 steel by employing particle velocities over a range of 43–167 m/s at normal impact angle for different durations within 0–10 min. A dry sand blaster erosion tester was used to study the erosion behaviour of API X120 steel impinged with aluminium oxide particles at room temperature. The equipment was designed to impinge the targeted sample surface with solid particles at different velocities under controlled erosion conditions. Scanning electron microscope and profilometry techniques were used to characterize the eroded API X120 steel surface. The results indicated plastic deformation and embedment of the erodent particle on the target material surface to be the predominant erosion mechanism observed at lower speed, while at high particle speeds the dominant erosion mechanism was observed to be metal cutting of the target API X120 steel surface.
-
-
-
Enhancing the Quality of “Produced Water” by Activated Carbon
The main objective is to contribute via this study, in solving an environmental issue and helping Qatar in finding suitable water resources; useful in agriculture. Qatar faces diverse water challenges; the number one that threats here is scarcity as water is not renewable. Due to scarcity of good quality water, reusing of low quality and contaminated water is highly increasing in Qatar. The main source of water in Qatar is desalination stations. Most of the desalinated water is for human usage. Agriculture in Qatar depends mainly on underground water; it is available but always saline and found in insufficient quantities. Due to the increasing demand for water among industries and irrigation, using other alternative water resources such as produced water during oil and gas extraction would be of importance. Generally, produced water is the water that exists in subsurface and is moved to the surface through oil and gas processes. The volume of produced water and pollutants concentration vary depending on the nature and location of the oil products. It represents the major waste stream related to oil and gas processes. Large volume of produced water generated in Qatar has the potential to enhance the water resources. The crucial goal of produced water management is to eliminate dissolved harmful components and use it for beneficial uses that can efficiently improve environmental impact and water shortage. An exclusive characteristic of produced water comparing to other wastewater resources is the large variation and complexity in water chemistry. This would play a vital role in the remediation processes.
Remediating produced water for irrigating use has been explored as a substitute to conventional disposal and discharge processes. Produced water is described by high concentrations of heavy metals, salts, toxic organic components, and total dissolved solids (TDS). Consequently, the produced water need to be remediated to meet the Qatari and international standards appropriate for the anticipated end use and to have a valuable resource rather than a waste.
However, the objective of this study was mainly dealing with using the adsorption technique in remediating benzene, toluene, ethyl-benzene, and xylenes (BTEX) and heavy metals from the produced water, After a fully determination of the quality of the produced water, the first part of the project was emphasized on remediation of BTEX and heavy metals to facilitate it to use for beneficial areas such as irrigation. In this study, activated carbon (AC) was used to remediated the soluble organics from the produced water and heavy metals. In addition, microemulsions was also used to modify the AC to selectivity remediate different types of pollutants. AC and microemulsions modified AC was used for effectively remediate BTEX and heavy metals from the produced water under specific conditions.
A representative sample of the produced water was collected from different sources at different times; the samples were collected in 20 liters container where two samples was collected per day,6 days × 20 litters × 2 = approximately 240 litters were mixed together and stored in a big storage container. A local sand sample (10 Kg) mixed with raw clay (2%) was used for the preparation of the sand filtration column (length 120 cm and 10 inches diameter), which was needed for the pretreatment step of the produced water. The produced water sample was then filtered and collected from the column with rate 12 ml/min. Different experiment parameters such as the effect of activated carbon mass (50, 35 and 20 g), particle size, pH (4, 6 and 8) and the temperature on metal and BTEX remediation were investigated. Glass columns with length 15 cm and 3 cm diameter were used for the experiments. One liter of the filtered produced water samples were filtered from each column with a rate of 2 ml/min. Microemulsion modified AC was prepared by mixing AC with surfactant Triton 100, then the mixture was shaked and dried at 80°C for 48 h.
A comprehensive chemical and physical characterizations of the produced water was conducted; namely pH (4.78), COD (6760 ppm), TOC (1550 ppm), TN (45.45 ppm), TDS (4490 ppm), conductivity (6800 μs/m), alkalinity (124 ppm, Hardness (1060 ppm). Several metals concentration was determined such as Ag, Al, As, B, Cd, Cr, Li, Mn, Sb, and Sr and the result were 0.31, 28.54, 0.00, 4363.76, 0.29, 16.97, 2231.59, 263.87, and 134.87 ppb; respectively.
The Fourier transform infrared (FTIR) spectra of sand filter, AC, and microemulsion modified AC were recorded using the FTIR Perkin Elmer. The FTIR analysis was carried out to interpret the functional groups which occurred in the AC and the modified form. The FTIR measurements was performed over 4000–400 cm− 1. Scanning electron microscope (SEM) was also used to evaluate the surface morphology of the adsorbents using the JEOL model JSM-6390LV.
The overall of the results were extremely excellent in which the metals concentration and BTEX was dramatically reduced when activated carbon was used as an adsorbent. According to the results, the activated carbon with of the different ranges and concentrations had been extremely efficient in removing benzene and toluene from the produced water. It can also be noted that with the increase of AC concentration, contaminants removal efficiency becomes higher up to a level were no BTEX compounds can be detected anymore.
The future work of the study will be designed to adopt environment-friendly method, such as phytoremediation to remove contaminants from water and soil to reuse that water in landscape and biofuel plantation. Three crop plant species Helianthus annuus (sunflower), Zea mays (maize) and Medicago sativa (alfalfa) in addition to Qatari endemic desert plants that are known to be salt tolerant and survive under contaminated soils such as Atri[lex leucoclda Bioss (Raghl)], Cyperus jeminicus Rottab (Rukbah), Tamarix aucherana (Decne) Baum (Tarfa), Phragmites australis (cav.) ex Steud (Ghab) will be used in this study and their associated microbes will be utilized to develop an effective cost method to remove contaminants from such polluted water and reuse it.
Acknowledgement
This paper was made possible by UREP grant # (UREP17-076-1-008) from the Qatar national research fund (a member of Qatar foundation). The statements made herein are solely the responsibility of the author(s).
-
-
-
Conversion of Organic Municipal Wastes into Biochars and their Effect on Fertility Parameters of Normal and Sabkha Soils of Qatar
Authors: Mohamed Ahmedna, Djaafar Rehrah, Rishipal Bansode and Osman A. HassanQatar is undergoing rapid economic growth fueled by its ambitious national vision 2030 which specifically aims to achieve sustainable development. To achieve the latter, durable and sustainable alternatives for municipal solid waste management are needed, especially since Qatar tops most nations in terms of per capita solid waste generation with nearly 2.5 million tons/year of which 60% consists of organic waste. Current disposal methods include incineration, composting, and land filling which generate greenhouse gases that contribute to global warming. At the same time, the soils in most of the country are poor with weak aggregation, low in organic matter, and low water holding capacity. Hence, it makes economic and environmental sense to convert solid organic wastes generated by municipalities into biochars that improve soil quality and act as carbon sink. The suitability of biochar as an effective soil amendment has been related to but not limited to boosting soil fertility by raising soil pH, increasing water holding capacity (WHC) and retention of nutrients in soil, providing a habitat for beneficial fungi and microbes, improving Cation Exchange Capacity (CEC), and reducing nutrients leaching. In addition, biochar has the ability to reduce the emission of the most potent greenhouse gases such as methane (CH4) and nitrous oxide (N2O). The objectives of this study were to: (1) produce and characterize biochars from solid organic wastes commonly found in Qatar municipal waste streams, (2) determine the effects of solid waste-based biochars on major soil fertility characteristics of normal and sabkha soils of Qatar, (3) select the best performing biochars for use in plant growth experiments.
Four feedstocks [paper, landscape waste, wood, and a mixture of all three) were pelletized, dried, and used as precursors for the production of biochars following a 4 × 3 × 3 factor factorial design consisting of the type of precursor (four different municipal solid organic precursors), pyrolysis temperatures (300, 500, and 750°C) and residence time (2, 4, and 6 hours). Feedstocks were pyrolyzed under N2 gas at a flow rate of 0.1 mL min− 1 using a Lindberg box furnace equipped with an air tight retort. Yields, surface area, and chemical properties [ash content, pH, surface charge, Electrical Conductivity (EC), Total Carbon (TC), and elemental analysis] of biochars with relevance to soil applications were determined. Qatari sandy soils (Normal and Sabkha) from the Ap horizon (0–15 cm deep) were collected, air dried, and 2-mm sieved. The incubation experiment was conducted in greenhouse pots. To each pot, sufficient amount of 0.25-mm sieved biochar was mixed with soil to yield carbon to soil ratios of 0, 1, and 2% (wt/wt). Box-Behnken experimental design was used instead of the full factorial to decrease the number of treatments to a manageable level (126 treatments) with three replications at the center. The biochar-amended soils (Normal sandy and Sabkha soils) were incubated for 120 days in a greenhouse at a 10% (wt/wt) moisture level. Samples of incubated soils were collected at time 0 (T0: after 8hrs) and at time120 (T120: after 120 days of incubation) for evaluation of soil fertility characteristics (pH, EC, WHC, aggregate stability, TCN content, macro, and micronutrients composition). In addition, pots were leached at days 60 and 120 and their leachates weighed, filtered, and analyzed for total organic carbon (TOC), pH, EC, micro, and macronutrients.
The application of biochars from different precursors to normal soil at different application rates showed a slight increase in pH of treated soil compared to the soil control at T0 and T120, particularly for biochars produced at high temperature and application rate. The increased soil pH is attributable to buffering effect of biochars pH which typically increases as the pyrolysis temperature increases. The same trend was observed for EC where the pyrolysis temperature of biochars seems to be the most influential on the normal soil EC, especially as it ages. The aggregate stability for the normal soil did not increase as the biochar application rate increases, except for hard wood-based biochar produced at high temperature which had a positive effect on the aggregate stability. However for sabkha soil, the pyrolysis temperature and biochar rate significantly increased the aggregate stability of this soil regardless of the precursor. This can be explained by the accumulation of organic matter that was favored by the binding of organic biochar compounds to abundant soil minerals through cation bridging and the formation of microaggregates that would then form large soil aggregates. The addition of biochars has significantly increased the total carbon (TC) of both soil types compared to the control soils. The total carbon increased with both application rate and pyrolysis temperature. Biochar pyrolysis temperature and application rates favored increased TC with variation depending on the type of precursor, soil type, and duration of incubation. This may be attributed to the oxidation and microbial activity processes that speeded up the process of mineralization in the soil. Overall, the TC in normal soil was higher compared to the sabkha soil which may be due to the fact that the starting carbon concentration in the normal soil was higher than that of sabkha soil. In terms of water holding capacity, it significantly increased in both soil types following biochar amendment, especially those produced at high pyrolysis temperature. The positive effect of soil amendment with biochars on WHC was most pronounced in the sabkha soil which exhibited markedly increased ability to absorb and retain water after biochar addition. This is likely due to the high surface area and porosity of the biochars combined with the effect of the polarity of compounds on the surface of biochars which physically retain water and/or improve soil aggregation thereby retaining more water in the soil. The addition of biochars to soil had a positive effect on the pH of normal soil leachates but less so on leachates from sabkha soil. Some pH variations were also observed within the pH of the same soil leachates as a function of the type of precursors used to produce biochars, most likely due to difference in initial composition of the precursors. This implies that biochars with greater liming capacity can provide greater benefit to arable soils that require liming. The results of cluster analysis were used to determine the group of biochar-amended soils which are the most significantly different from the control treatment in terms of soil fertility parameters (pH, EC, TC, WHC, aggregate stability, leachate pH, micro and macronutrients). From the four precursors, only two (soft and mixed materials) were found to be most effective for normal soil and all improved sabkha soil. To further narrow the selection, a secondary selection was carried out based on the biochars precursor type, yield, and energy required for biochar production. Two biochars emerged as the best performing biochars for normal and sabkha soils. Biochars produced from mixed materials pyrolyzed at 500–750°C for 4–6 hours of pyrolysis time and used 2% application rate are best for amendment of normal soil while soft and mixed materials pyrolyzed at 300–500°C for 4 hours and used at 0.5–1% application rates as most suitable for the amendment of sabkha soil. These biochars were found to improve all soil fertility parameters, especially in terms of pH and WHC.
From the above discussion, it is clear that Biochar characterization and short-term soil incubations can provide insights into the potential effectiveness of biochar as soil fertility enhancer and aid in the selection of potential biochars that can improve crop productivity. Overall, normal soil seems to require mixed material produced at high temperature and longer time and applied at high rate while sabkha soil required softer materials produced at lower temperature and shorter time and applied a low application rate. This is encouraging results for carbon depleted soil in Qatar where the application of biochar to agricultural soils has the potential to greatly improve soil physical and chemical conditions while serving as a long term carbon sink. These best performing biochars are being tested in plant growth experiments designed to assess their impact on plant biomass and productivity as indicator or their potential in field agriculture in Qatar.
-
-
-
Hot Spots for Poly Aromatic Hydrocarbons (PAHs) in Sediments and Benthic Organisms in the Coastal Water of Qatar
Authors: Yousria Soliman, Ibrahim Al Ansari, Jose Sericano and Terry WadeThe state of Qatar has a strategic location within the heart of the Arabian Gulf, the richest oil area in the world. Its extensive coastline (700 km) is experiencing some of the most radical environmental conditions in the world's oceans including extreme temperature, high UV irradiance as well as high evaporations. These extreme conditions are pushing many marine biota to function close to their physiological limits. On the top of the extreme natural hydrographic conditions, there are tremendous stress exerted by oil exploration, production and transportation and probably any remnants from the largest oil spills in history, during the Gulf war in 1991. The present study is the first comprehensive study in the Gulf that is designed to assess the spatial and temporal variability of levels of Poly Aromatic Hydrocarbons (PAHs) in sediments of the Qatari coastal water and their bioaccumulation by dominant benthic invertebrates. Sediments and dominants benthic organisms samples were collected seasonally from thirteen locations in the coastal water of Qatar starting in the winter of 2014 and for four consequent seasons. Ten abundant benthic invertebrate species representing different trophic levels were selected to assess the spatial and temporal variability of PAHs in the Qatar costal water. These species have limited or no mobility, a major criteria for selecting benthic organisms in bio-monitoring programs. These species included gastropods, bivalves, and crustaceans with different trophic positions including carnivores, omnivores, herbivores and detritivores. Samples were analyzed for 16 parent PAHs including low molecular weight parent PAHs (LPAHS) and high molecular weight parent PAHs (HPAHs), 18 alkyl homologs and dibenzothiophenes. The results of the present study will be used for ecological risks assessment.
Levels of PAHs in sediments and tissue residues are found to be significantly variable with species, locations, seasons and also with distance from shore (P < 0.05). PAHs concentrations in sediments is negatively correlated with the water temperature (r = − 0.65) indicating the impact of temperature and probably levels of UV radiations on the fate of PAHs. Levels of PAHs in sediments indicated the presence of few moderately contaminated sites near point sources. Concentrations of PAHs in sediments showed wide spatial and temporal range (5 8.5%) presenting a range of trophic levels including carnivores and filter feeders. Significant correlations (P < 0.05) were found between PAHs tissue residues concentrations and signatures of carbon and nitrogen stable isotopes emphasizing the roles of trophic pathways on the uptake and bioaccumulation levels of individual PAHs in marine invertebrates. The present results are to be supported by more samples from two more seasons. The knowledge from this study intended to assist PAHs monitoring and identification of potential sources to guide management decisions. The outcome of the study is expected to help the regulatory agency (Qatar Ministry of Environment) as well as Gulf organizations such as ROPME to improve environmental laws and set standards based on these studies. Acknowledgements: This Research was supported by a grant (NPRP-6-442-1-087) from the Qatar National Research Fund (a member of Qatar Foundation) to Yousria Soliman, Ebrahima Al Ansari, Terry Wade, and Jose Sericano.
-
-
-
Effective Methods to Improvement Capparis Spinosa L. (Caper) Seeds Germination by Breaking Seed Dormancy in Qatar Gene Bank
More LessThis study to identify the best pre-treatments to improve seed germination of Capparis spinosa according to standard seeds germination protocols and seeds viability test methods.
Capparis spinosa L. (Capparidaceae) Native to the Mediterranean region and Arabian Peninsula. Locally known ‘Shafallah’ and also known as ‘Caper’ both names used throughout the Arab countries for various Capparis species. The plant is very common in the rodat in northern Qatar in the deep alluvial soil. But at last 10 years Capparis spinosa plants Are in danger of extinction from habitat degradation and changes in environmental conditions. The younger flower buds are collected and pickled in salt solutions. They are used as a condiment in many Mediterranean and Arab countries. Young fruits and young shoots with small leaves may be pickled for use as a condiment. Capers has a sharp piquant flavor, which comes from methyl isothiocyanate, arising from crushed plant tissues. The tender young shoots and the small leaves may also be cooked and eaten as a vegetable.
Based on the literature author reported that Capparis spinosa has high economic and medicinal value in many medicine pharmacies, including Arabian medicine, traditional knowledge, and Chinese medicine. Traditional knowledge of Arabian countries Capparis species were used for treatment wounds and problems in the spleen, liver, kidneys and intestines, to dispel gases, for treat skin diseases, to strengthen teeth and relieve backaches. The plant growth Accompanied mainly by Ziziphus nummalaria, Acacia tortilis and Lycium shawii.
In this study, seeds of Shafallah treated with different dormancy treatments included, concentrated sulfuric acid H2SO4 98%, 0.1% and 0.2% potassium nitrate KNO3, hydrogen peroxide H2O2, boiling water, tap water 24 hours, mechanical scarification “removing part of the seed coat without damaging the embryo”, and gibberellic acid GA3 100 ppm, and 200 ppm to improve seed germination of very important native medicinal plants in Qatar. Capparis spinosa seeds used for production and restoration seedling in some protected area and rodat. Pre-treatments have been done with old seed stored in standard gene bank conditions, and fresh collected seeds, this study carried out in Genetic resources Department, Agricultural Research Department, Ministry of Environment.
Viability test of old storage seeds using 2,3,5-Triphenyltetrazolium chloride has given 80%, but the germination percentage of seeds without any treatments gave 8% after 30 days in automated growth chamber machines. Fresh collected seed viability test has given 100%.
The highest germination percentages 98% and the fasting germination rate was obtained using mechanical scarification with fresh collected seeds after germinated in 10 days under automated standard germination conditions in laboratory growth chamber machines. Results visibly suggest the fresh seeds of caper have highest viability and germination percentage more than old storage seeds.
Finally, Qatar is home to unique and important plant genetic resources, but due to changes in land use and increased development, habitat reduction has emerged as a significant threat to its biodiversity. Capparis spinosa showed in different areas in Qatar as green color to our yellow deserts in the summer, The plant is green and flowering in the very dry regions, and the plant gives fruits two times in Qatar. We can use plant in food security and sustainability programmes. We need more education and public awareness to increase awareness about Qatari native important medicinal plants. Keywords: Dormancy, Capparis spinosa L., Germination, Viability, Germination, Qatar.
-
-
-
Urine Separation, Nitrification and Sewer-Discharge for Sewer Gas Control – Performance and Adaptation of a Urine Nitrifying Batch Reactor
Authors: Hamish R. Mackey and Guang-Hao ChenLack of sufficient oxygen within sewer networks leads to anaerobic bioprocesses occurring, including hydrolysed organic degradation by methanogensis and sulfate reduction. These anaerobic processes produce methane, a greenhouse gas twenty-one times more potent than carbon dioxide; and hydrogen sulfide, a toxic and corrosive gas responsible for severe sewer corrosion and public odour nuisance. These gases are typically controlled by chemically dosing oxygen or nitrate into the sewers. Urine contains roughly 80% of the nitrogen in wastewater and can be easily separated at the household using specialized toilets. If nitrified decentrally it could be discharged to sewer as nitrate to control sewer gas while achieving simultaneous nitrogen removal in the underground sewer network.
In this study a 13.8 L lab-scale urine nitrification sequencing batch reactor was operated for 335 days to assess its performance treating real urine diluted to 30%, a concentration that could be expected from urine-source separating toilets. The reactor had a daily 1 hr anoxic fill and was aerated at 5 L/min for the remainder of the day by coarse bubble diffuser. The influent volume was increased from 1 to 2.65 L/d over the first 170 days of operation. The reactor was settled for 10 mins and decanted once the exchange volume capacity was exceeded, which occurred every 2–5 days depending on influent volume. Alkalinity as NaHCO3 was added stoichiometrically in the influent at a ratio of 1.05 mol:mol-N to allow complete nitrification. Seeding sludge was taken from a municipal wastewater treatment plant.
Between days 227–335 twelve batch tests were done to understand the activity of the various microbial groups including ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria (HB) under varying pH (7–9), free ammonia (42–194 mg-N/L) and free nitrous acid concentration (0–0.205 mg-N/L). In these tests a 5 L reactor was operated for 6 hours with approximately 700 mg-VSS/L of biomass measuring changes in ammonia, nitrite, nitrate and chemical oxygen demand (COD) which were used to calculate biomass specific removal/production rates.
The diluted urine in this study had an average total nitrogen concentration of 1790 mg-N/L, a COD of 1460 mg/L and a pH of 9.3. Nitrification was stable throughout the study with a maximum volumetric rate of 450 mg-N/L.d achieved and nitrate as the final nitrification product.
In the batch inhibition testing it was found the optimal pH of the system for ammonia oxidation was at 8.5 with only an 11% reduction in oxidation rate at the highest pH tested of 9. This reflected operational conditions of the reactor where the pH exceeds 9 at the start of a reactor cycle when nitrification begins. Conversely, nitrite oxidation rates were greatest at the lowest tested pH of 7. In a normal reactor cycle ammonia oxidation reduces the pH by consuming alkalinity. Due to the faster growth of AOB and high demand for oxygen the NOB were generally suppressed in a typical cycle until ammonia oxidation was complete, at which time the pH was near 7. This indicated a niche group of organisms adapted to the operational conditions and surrounding microbial community within the reactor.
Under varying free ammonia concentrations it was shown that inhibition for ammonia oxidation and organic oxidation began somewhere near 100 mg-N/L which corresponded roughly with the maximum levels encountered in the reactor. On the other hand free nitrous acid caused a 24% reduction in nitrite oxidation at a concentration of 0.1 mg-N/L.
This was not significant as free nitrous acid in a typical reactor cycle did not exceed 0.04 mg-N/L but could prevent NOB growing if nitrite build-up occurred, in which case concentrations could exceed 0.4 mg-N/L. Organic oxidation was inhibited by free nitrous acid somewhere above 0.1 mg-N/L, but during the initial two hours of a cycle when organics are predominantly degraded free ammonia concentrations are typically less than 0.001 mg-N/L. This study demonstrates the feasibility of decentralized urine nitrification to produce nitrate under stable conditions. The features and ability of the microbial community in such a reactor is strongly associated with the operational conditions imposed.
-
-
-
Outdoor Testing in Qatar of PV Performance, Reliability and Safety
Authors: Ahmed Ennaoui, Ben Figgis and Diego Martinez PlazaAlthough PV has made remarkable progress in reducing costs, the absolute cost is highly related to the reliability of system components, which is determined by the life span in which PV remains fully functioning. Longer life is especially required for the solar panels when their initial cost is relatively high and therefore longer life guarantees their pay back and increases their profit. Indeed great efforts have been spent by manufacturers to make the panels more reliable and durable to the hard environmental conditions. In spite of careful design and production conditions during manufacturing, the environmental cyclic stresses cause irreversible changes in the solar cells that cause them to partially totally malfunction gradually with time. An accurate measurement of power drop over time, (or degradation rate), is essential to all stakeholders, industry, and investors.
What are the factors affecting the reliability of solar PV technology in harsh environments?
PV technologies are designed to deliver amounts of solar electricity, which is varying differently when submitted to harsh environments (temperature, soiling, UV radiation, wind). The temperature is one of the main factors affecting the power output of a PV system. Researchers may explore the so-called NOCT rating or “normal operating cell temperature” which is indicative of module temperature.
Based on the difference between module temperature and ambient temperature, NOCT can be calculated for crystalline Silicon [1], and thin films [2]. However the influence of other environmental factors must be taken into account when determining the amount of energy (in watt-hour or Wh) produced during a period of time to ensure the consistency and performance criteria of PV systems. Solar Test Facilities in Qatar Foundation: In Qatar, prediction of PV performance can be improved through statistical data collected from PV fields. QEERI is collaborating with Qatar Science & Technology Park and GreenGulf on research at the Solar Test Facility, and developing state of the art solar test laboratory facilities, in order to provide information to stakeholders and industry for better deployment of PV technology in Qatar to meet the Energy grand challenges of the country. A wide variety of equipment, tools, and techniques are used to explore and follow-up failures of PV modules for different technologies. Since March 2013 around 20 photovoltaic technologies have been continually tested at the outdoor Solar Test Facility at Qatar Science & Technology Park. Solar energy technologies at the STF include: Crystalline, thin film, including concentrating (thermal Linear Fresnel collector) as well as battery storage. Overview of Solar Test Facility in QEERI: Two years of investigations have revealed the relative performance of different solar technologies in Qatar's climate, their reliability and degradation, and the impact of heat and dust on their efficiency. We found that flat-plate PV yields more energy than concentrating PV, due to diffuse light conditions at the STF [3]. Crystalline silicon and thin film PV had similar average yields. Of all PV technologies tested, only one-showed signs of severe degradation in the first two years. Dust and heat significantly reduced power output, but high levels of insolation in Qatar compensated this problem. Roadmap: • 2010: Initiated by QSTP, GreenGulf and Chevron
• 2011–12: Systems installed
• 2013: Testing commenced
• 2014: QEERI joins collaboration Final Remarks: • We observed from our experimental data analysis that ordinary flat-plate PV is well suited to Qatar's conditions, provided it is cleaned occasionally.
• Still a need to explore NOCT taking into account module and ambient temperature, available solar irradiance.
• Correlation with simulated yearly module generation, module temperature, solar irradiation (GHI, DNI,) as well as soiling conditions. Acknowledgements: We thank GreenGulf and QSTP for providing data from the STF for this study References: [1] International Standard EN-61215; 1993–04.
[2] International Standard EN 61646; 1996–11.
[3] Daniel Perez-astudillo and Dunia Bachour. (2014). Solar Resource Measurements In Doha, Qatar. Qatar Foundation Annual Research Conference Proceedings: Vol., EEPP0697.
-
-
-
Carbon-based Electrode Materials for Biotic Treatment of Wastewater and Saline Water
Authors: Dong Suk Han, Celal Erbay, Choongho Yu, Arum Han and Ahmed Abdel-WahabIn the past decades, microbial fuel cells (MFCs) have been intensively studied in order to provide sustainable and environmentally friendly wastewater treatment concurrent with energy harvesting. A highly porous, highly efficient, light-weight, and inexpensive 3D sponges consisting of interconnected carbon nanotubes (CNTs) were developed as anodes of MFCs in order to allow more efficient microbe-to-anode electron transfer that are key to the operation of MFCs. The MFCs equipped with the 3D CNT sponge anode generates high power densities of 2150 Wm–3 (per anode volume) or 170 Wm–3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions (1). The high performances are due to excellent charge transfer between CNTs and microbes, which is evident by the 13 times lower charge transfer resistance compared to that of carbon felt. The 3D CNT sponges produced here has low cost (∼$0.1/gCNT) and high production rate (3.6 g/hr) compared to typical production rate of 0.02 g/hr of other CNT-based materials (1). The high production rate and low cost of this highly efficient electrode material can make MFCs more feasible to be scaled up for various applications such as desalination of seawater or saline water. Also, other electrode materials were compared to the 3D CNT sponge in evaluating the efficiency of the MFC and extending the use of these electrode materials to a field of microbial desalination cell (MDC).
Once MDCs are applied to the desalination process, there are several challenges that need to be addressed. First, a pH gradient forms between anode and cathode chambers (due to proton accumulation in the anode chamber and hydroxyl ion accumulation in the cathode chamber). In addition, chloride ion accumulation inhibits the activities of electrochemically active microbes. Together these activities degrade the overall performance of the system. Recirculation of the anolyte and catholyte provides one solution to addressing this challenge. However, this approach results in lower Coulombic efficiency. Here, we studied to develop a modified three-chamber configuration where part of the anode chamber and part of the cathode chamber are directly connected through a cation exchange membrane, thus partially allowing transport of protons between the chambers, and thereby limiting the drop in pH, while still maintaining charge differences that drive Cl– and Na+ ions to move from seawater to the anode and cathode chambers. Practical MDCs require continuous or batch-mode feeding of wastewater into the anode chambers of the system, thus accumulated chloride ions will be simply flushed out or diluted due to the influx of new wastewater or catholyte. This aspect will mitigate the impacts of the chlorine ion accumulation problem. Also, a pivotal performance limitation centers on the cathode catalyst layer owing to sluggish kinetics of the oxygen reduction reaction and several transport losses. On the cathode side, expensive precious metal catalysts have been used in conventional systems to overcome the slow reactions on the electrode. Platinum and Pt-based electrocatalysts, commonly used in the electrodes, not only contribute to high fuel cell cost but also lead to durability concerns in terms of Pt cathode oxidation, catalyst migration, loss of electrode active surface area, and corrosion of the carbon support. So, this study used Pt-free 3D carbon-based cathode for MDC system.
Reference
[1] Celal Erbay, Gang Yang, Paul de Figueiredo, Reza Dadr, Choongho Yu, Arum Han, “Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells”, Journal of Power Sources, (2015), 177–183.
-
-
-
Arabian Dugongs of Qatar: Updates from a Renewed Research Initiative
Authors: Christopher Warren, Jennifer Dupont, Christopher Marshall and Mehsin Al-AnsiDugongs (“bugarah al bahr” or “cow of the sea”) in Qatar and the wider Arabian Gulf, are animals of both historic and cultural significance to the people in the region. Historically hunted in Qatar, today they are seen as a symbol for conservation in a country that is trying to balance rapid modernization and coastal development with protection of marine biodiversity, as outlined in the Qatar National Vision 2030.
Qatar and the Arabian Gulf are home to the largest population of dugongs outside of Australia and is the most important region for dugongs in the western portion of their range. As long-lived large mammals with low reproductive output dugongs are vulnerable to exploitation and are listed as Vulnerable to Extinction by the IUCN (International Union for the Conservation of Nature). Currently, dugongs in Qatar face many threats including incidental fisheries bycatch and habitat degradation. The extreme marine and physical environment of the Arabian Gulf, as well as the northern limit of dugong distribution, likely means that their life-history differs from populations in Australia. However, there are virtually no life history data for Qatari dugongs and the species remains mostly unstudied.
A solid understanding of dugong natural history is necessary to develop a successful management and conservation program. Our knowledge of dugong natural history in Qatar and the Arabian Gulf is poor compared to our knowledge of dugongs in Australia (where the largest population exists). Although approximately 6000 dugongs were estimated to live in the Arabian Gulf including Qatar, this number has not been verified. Sporadic research has been conducted on the Qatari population, including work in 1986 which recorded the largest single dugong group of 577 individuals in the waters between Qatar and Bahrain. More recently, in 2008, the Qatar Ministry of Environment conducted surveys that expanded the area around Qatar where dugongs were observed.
Our current study applies similar techniques from the past (boat-based and beach surveys) with newer techniques (aerial surveys using Unmanned Aerial Vehicles [UAVs], histological analyses) to provide an updated understanding of when, where, and how many dugongs are present in Qatari waters, along with preliminary information on their population demographics. From our 2014–2015 surveys, we have enumerated individuals in a large herd, consistently spotted in the winter months in similar areas to the 1986 and 2008 surveys. A total of 508 individuals (including 51 cow-calf pairs) were counted using images taken from a UAV. Underwater surveys verified that the major activity was foraging upon a mixed stand of seagrasses, Halodule univernis and Halophila ovalis, in clear, shallow water (
-
-
-
Determination of Optimum Iron Requirement for Production of Microalgae Biomass as Biofuel Feedstock
More LessMicroalgae biomass is considered as one of the promising alternative feedstock for biofuel production. The biomass productivity of some of the microalgae can exceed an order of magnitude compared to any other terrestrial plant. Apart from nitrogen and phosphorus, iron is one of the major elements that must be provided to microalgae culture for high density biomass production. The amount of iron that is required per cell or per unit of microalgae biomass will vary among microalgae strains. Depending on the concentration of iron in the cultivation media, the microalgae will accumulate different amount of iron and this process may alter the compositions of other major metabolites. In order to be competitive the cost of microalgae biomass production should be lower and the desired metabolites should be present in higher percentages; therefore, the appropriate concentration of iron should be determined. On the contrary, there are very limited study on the microalgal iron requirement. The first objective of this study is to determine the minimum concentration of iron requirement by some of the locally isolated potential microalgae. The second objective of this study is to characterize the lipid accumulation under different iron concentrations. Gillard f/2 and BG-11 are the two common nutrients composition used to culture marine and freshwater microalgae respectively. In these two nutrients media, the concentrations of iron are 0.65 mg/l and 1.24 mg/l for Guillard F/2 and BG-11 media respectively. Due to some limitations, in most of the cases the concentrations of phototrophic microalgae in large scale biomass production doesn't exceed 0.5 g/L. If these two media are to be used in large scale, iron requirement can be calculated as 1.3 kg (6.3 kg as FeCl3.6H2O) and 2.4 kg (12 kg as FeCl3.6H2O) respectively for each ton of biomass production. Therefore, the cost of the iron fertilizer can be significant for low cost feedstock; furthermore, if there is residual iron in the discharge water it will require additional treatment steps. Three local marine microalgae (Nannochloris sp., Tetraselmis sp., Chlorocystis sp.) and three local freshwater microalgae (Scenedesmous sp., Chlorella sp., Neochloris sp.) were selected to study their iron requirement. Apart from iron, all the nutrients were added as per f/2 or BG-11 media concentrations. However, for the marine microalgae, the range of iron concentration was 0 to 1 mg/L while for the freshwater microalgae it was 0 to 3 mg/L. All the experiments were conducted in triplicates. 10 ml of culture was inoculated in 90 ml containing any culture media in a 250 ml flask; the flasks were kept in an orbital shaker which was maintained at 120 rpm speed, 25°C, 12 hours photoperiod. The growth period for any strain was kept fixed at 7 days. It was found that marine Naanochloris sp. didn't require the addition of iron; the available iron in the seawater is sufficient to produce 0.5 g/L biomass density. The other two strains had also smaller iron requirement compared to f/2 media. For the three freshwater microalgae, there was also minor requirement for iron (1 mg/L) which was much lesser than iron concentration in BG-11 media. Iron deficiency, during the cultivation process, resulted in bleaching and changes in metabolites (especially in pigments). Nannochloris sp. and Scenedesmous sp. will be later grown in outdoor small raceway tanks (1000 liter) to verify the indoor small scale results.
-
-
-
Smart Energy Management and Power Flow Control for Multi-Microgrids Interfacing with Utility Grid
Authors: Sertac Bayhan and Haitham Abu-RubNowadays, new trends have made possible to reconfigure the traditional power systems in a more efficient way while world energy consumption is being continuously increased. To meet future energy demands, a more flexible, smart and configurable power system is required. To create such systems, microgrids are emerging and becoming a more attractive solution. The microgrid is a weak grid formed with different energy sources (renewable and conventional), energy storages, power electronics, power control systems and different loads. The microgrids are also particularly suitable for communities and regions where adequate renewable energy sources are available such as in Qatar. Therefore, the energy cost can be significantly decreased, energy security ensured, and energy production become environmental friendly with lower carbon footprints.
The energy sources are the major part of the microgrid systems. As a result of increasing environmental awareness and as a consequence of the exhaustible nature of fossil fuels, renewable energy sources (RES) are playing an important role in modern microgrid systems. The RES based power generation systems have several advantages compared to the conventional power generation systems. Some of these advantages are sustainability, pollution-free operation and the possibility of being installed closer to the end users. In the last decades, especially the wind and photovoltaic (PV) based power generation systems have become more popular than other RESs. However, intermittent and stochastic nature of the wind and solar affect the stability, reliability and power quality of the microgrids. For instance, the PV based system cannot produce energy at night or during cloudy conditions, and wind-based systems generate energy that depends on the wind condition. To overcome these limitations, two or more (hybrid) RES, in addition to proper storage technologies, are needed to provide reliable, stable and continuous power to the customers. However, using different types of renewable energy sources in the same microgrid leads to complex control structure because these sources have different dynamic characteristics and need different control structures. Hence, a well-designed energy management and power flow control systems are essential to ensure the extraction of maximum power from these energy sources.
Another part of the microgrid systems is an energy storage system (ESS) that plays a vital role to maintain stability and robustness as well as to improve the power quality of those systems. For these reasons, an effective ESS must characterize high power density as well as high energy density. In recent years, various types of battery technologies are used for energy storage systems. In spite of their maturity and variety, batteries still have limited lifecycle and poor power density, which is an important element for balancing the renewable based power generation systems. Thus, to support and improve the battery performance, lifetime and system cost, hybrid energy storage systems (HESS) can be suggested while comprising supercapacitors (SCs) and batteries. SCs have a number of advantages related to high efficiency (95%), high power density (up to 10000 W/kg),
tolerance for deep discharges, and long life-cycle (500000 cycles at 100% depth-of-discharge). The combination of SCs and batteries allows to have the advantages of both solutions by obtaining high energy density, high power density, high life-cycle, high efficiency HESS and ensuring better power stability when interfacing with the grid. However, batteries and SCs have different charge and discharge characteristics. Therefore, a well-designed energy management and power flow control system is essential for that system to provide efficient operation and long life cycle.
In the microgrid system, power flow should be bi-directional. For example, in case of insufficient energy, the utility grid can support the microgrid, vice versa, in case of exceed energy, microgrid can inject this energy to another microgrid(s) and/or to the utility grid. Therefore, in such systems, power electronic converters are important to allow the power flow between energy sources, energy storage devices, loads, and the utility grid. These power electronic converters not only allow to connect different electric devices together (whether they are loads, generators or storage devices), but also to provide suitable control for optimizing and protecting the whole system. Furthermore, to ensure the power connection between these different units, a direct current (dc) microgrid or an alternating current (ac) microgrid can be used. However, as mentioned above, most of these units are controlled by power converters, and each of these converters requires a dc-link. For this reason, one common dc-link can obtain appreciable savings for such systems.
To ensure power flow between energy storage devices, energy sources, loads, and the utility grid (if needed), energy management algorithm is essential. A well-configured energy management algorithm increases energy efficiency, system stability, and battery life cycle. Therefore, the energy management algorithm and control structures must be defined properly according to system requirements. Several research activities focus on the energy management algorithm for HESS and power flow control algorithm. Types of the developed algorithms depend on the system power, storage techniques, types of energy sources, and operating modes such as grid-connected and/or standalone. However, most of these studies focused on only one microgrid and its control. In reality, more than one microgrid in the same region and different types of distributed generation units in these microgrids are common. Typically, the energy management control structure can be divided into three categories; centralized, distributed, and multi-level control structures. In all three cases, each energy sources and energy storage devices are controlled by the local controller to determine the optimal operating point locally. To increase the impact of the microgrids, the microgrids should be controlled by the same centralized controller. The microgrids also should have monitoring facilities to observe and reconfigure the energy consumption of the consumers.
The main goal of this study is to design, develop and implement novel smart energy management and power control strategy for two grid-connected microgrids. The presented two microgrids have different charactersitics in terms of renewable energy sources and energy storage technologies. Thus, by the proposed smart energy management and power control strategy, the two different microgrids operate at their best efficiency points regardless of different conditions. They can also operate in bidirectional with each other and/or utility grid. For example, if there is exceed power in one of the microgrids, this energy will be transferred to the other microgrid and/or the utility grid, vice versa if there is insufficient power for the local loads, microgrids request power from the utility grid. This innovative feature of the study will be an effective solution for growing microgrids toward securing the increased power demand. Furthermore, this study presents condition monitoring to adjust and reconfigure the energy consumption of the consumers.
To verify the proposed smart energy management and power flow control system, two laboratory-scale microgrids are designed and implemented. As shown in Fig. 1, the proposed prototype consists of two microgrids connected to the utility grid through the grid interactive inverters. These microgrids can also connect to each other through isolated bi-directional converter. In addition to these, each microgrid consists of four subsystems. (1) Wind energy conversion subsystem, (2) PV energy conversion subsystem, (3) Hybrid energy storage subsystem, and (4) Power electronics interface for AC load. Each subsystem has own local controller that can communicate with centralized controllers in order to increase system efficiency. Furthermore, whole system is controlled by a central controller to ensure optimal power flow between Microgrid I, Microgrid II and utility grid. The results of the study will not only benefit the energy management of multi microgrids but will also benefit the power grid operation especially the distribution system creating positive environmental impacts paving the road for future large-scale integration of the smart grid flexible load technology in Qatar.
-
-
-
Mechanical Behavior of a Novel Nanocomposite Polysulphone – Carbon Nanotubes Membrane for Water Treatment
Nowadays, global fresh water shortage is becoming the most serious problem affecting the economic and social development. Water treatment including seawater desalination and wastewater treatment is the main technology for producing fresh water. Membrane technology is favored over other approaches for water treatment due to its promising high efficiency, ease of operation, chemicals free, energy and space saving. Membrane filtration for water treatment has increased significantly in the past few decades with the enhanced membrane quality and decreased membrane costs. In addition to high permeate flux and high contaminant rejection, membranes for water treatment require good mechanical durability and good chemical and fouling resistances. Thus, investigation of the mechanical behavior of water treatment membranes with underlying deformation mechanisms is critical not only for membrane structure design but also for their reliability and lifetime prediction.
Compared to ceramic and metallic membranes, polymer membranes with smaller pore size and higher efficiency for particle removal are widely used in seawater desalination with a high applied pressure. However, polymer membranes are mechanically weaker and have lower thermal and chemical stability compared to inorganic membranes. Blending of polymers with inorganic fillers is an effective method to introduce advanced properties to polymer based membranes to meet the requirements of many practical applications. The reinforced polymeric membranes with inorganic fillers can provide desirable mechanical strength as well as mechanical stability. Carbon nanotubes (CNTs) have received considerable attention from academic and industries over the last twenty years. In addition to their excellent electrical and thermal properties, CNTs exhibit outstanding mechanical characteristics due to its instinct mechanical strength and high aspect ratio. For the application of water treatment membranes, CNTs could be the excellent channels for water to go through and therefore, CNTs have proven to be excellent fillers in polymer membranes improving the permeability and rejection properties. In literature, it is reported that the mechanical strength of the polymer membranes was improved with the embedding of CNTs due to reinforcement effect of the more rigid CNTs. The mechanical responses of polymer_CNTs composites depended on the interfacial adhesion between the CNTs and the membrane-based polymer as well as the dispersion and distribution of the CNTs within the polymer matrix.
In this study, a vertical chemical vapor deposition reactor was designed in order to synthesize CNTs of high aspect ratio using continues injection atomization. Bundles of high purity (99%) and high quality CNTs were produced by this system. The produced CNTs had diameters ranging from 20 to 50 nm and lengths ranging from 300 to 500 micron (corresponded aspect ratios ranging from 6000 to 25000). A novel polysulphone (PSF) based nanocomposite membrane incorporated with the produced high aspect ratio CNTs was then casted via phase inversion method, at a wide range of CNTs loading (0–5 wt. %), in polysulphone-dimethylformamide solutions using the Philos casting system. The poly(vinylpyrrolidone) was used as pore-forming additive. To demonstrate the effect of nanocomposite morphology on the mechanical behavior of the prepared membranes, a set of control samples consisted of PSF membranes embedded with commercial CNTs at the same CNTs loading, were casted at the same conditions. The commercial CNTs had a lengths of 1 μm to 10 μm and outer diameters of 10 nm to 20 nm (corresponded aspect ratios ranging from 50 to 1000), with purity >95% and BET surface area of 156 m2/g.
The effects of CNTs content and aspect ratio on morphological, water transport and mechanical properties of the prepared PSF-based porous membranes were investigated. The surface and cross-section morphologies of PSF/CNTs porous membranes were examined using scanning electron microscopy (SEM). The orientation, dispersion and distribution of CNTs within polymer membranes were evaluated for the membrane samples with different CNTs content and CNTs aspect ratio. The average membrane pore size was evaluated by using SEM image analysis software.
Uniaxial tensile behavior of the membranes was characterized by means of a universal material testing machine under different testing conditions. Wet specimens were carefully cut from the casted membranes by using a razor blade. Elastic, plastic and failure behaviors of the membranes are analyzed with the impacts of CNTs content and aspect ratio. The macroscopic mechanical behaviors of the membranes are correlated with their strain induced microstructure evolution by using SEM. In this, pore shape evolution, pore and CNTs orientations, neighboring pore interaction, interface between the CNTs and PSF matrix and the failure behavior of the deformed porous membranes were analyzed. The macroscopic stress-strain responses of the membranes were correlated with the microstructure of the studied nanocomposites membranes to provide a better understanding of materials' processing-microstructure-properties relationship.
-
-
-
ATHLOC: Advanced Thin Film Hybrid Low Cost PV Towards Cost Reduction of PV Through Material Optimisation and Efficient Solar Cells
The solar photovoltaic industry is dominated by crystalline silicon with a global PV market share of 90%. The global PV module production has reached about 40 GW in 2013. Competing with Si PV, thin film photovoltaic modules have reached a market share just below 10%, with dominance by two companies: First Solar for CdTe and Solar Frontier for Cu(In,Ga)(S,Se)2. Derived by the technological learning and economies of scale, solar photovoltaics industry has seen remarkable cost reductions over the past decades. One possible route to further reduce the price of the photovoltaic (PV) module and reach the grid parity is to develop an efficient PV technology based on low cost materials and processes. Thin film PV has a higher potential for cost effective production in the economy of scale than the other technologies in the market today. The competitiveness of thin film technology currently faces three significant challenges in order to achieve widespread market acceptance and adoption:
• Increasing the record efficiencies toward the theoretical limit and beyond
• Increasing the efficiency of modules (particularly, decreasing the gap between lab scale champion cells and production modules)
• Reducing direct materials and processes costs, specifically by reducing the usage of scarce materials resources
At QEERI, the recently launched grand challenge project ATHLOC-PV (Advanced Thin film Low Cost PV) aims to tackle these issues by developing in Qatar an emerging alternative PV technology. Following a roadmap towards thinner, cheaper and more efficient thin film solar cells, the main objective of ATHLOC-PV is to obtain lower cost, lighter weight and durable photovoltaic modules and to accelerate the decrease in the cost/efficiency ratio for thin film PV modules. The overall aim is to demonstrate a new-type of thin-film solar cell of conversion efficiency in the region of 20% capable of environmentally acceptable large-scale production at a manufacturing cost of below 0.5 $/watt with potential for further significant improvements in the future. To reach this objective, two alternative thin film materials are targeted in ATHLOC namely: Cu2ZnSn(S,Se)4 (CZTSSe) and Cu(In,Ga)(S,Se)2 (CIGSSe). The key advantages include favourable optical band gap (1–1.5 eV), low materials usage and consequently a lower energy-payback time, usage of flexible substrates leading to lightweight and the potential of cost-effective roll-to-roll manufacturing, high conversion efficiency potential. In addition CZTSSe has the advantage not to suffer from abundance issues compared to CIGSSe.
Table 1 compares record efficiencies from laboratory research
Thin-film PV permits a higher cost-reduction potential when up scaling to GW production volumes [2] compared to Si wafer technology. However, the limited supply of some elements (i.e. In in CIGSe) and related costs upon considerably increased production volumes present a constraint that has to be addressed. The overall aim of ATHLOC project is to reduce the use of scarce elements and still reach high efficiencies by developing low cost roll-to-roll inkjet printing processes for the fabrication of CZTSSe solar cells [3], we expect to significantly reduce the manufacturing costs of the modules. In this contribution, the objectives and the roadmap of the ATHLOC-PV project will be presented, as well as the strategy foreseen to improve the efficiency and reduce the cost of the Kesterite solar cells.
References
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, ‘Solar cell efficiency tables (version 46)’, Prog. Photovolt: Res. Appl. 22, 701 (2014).
[2] C. Wadia, A.P. Alivisatos, and D.M. Kammen, Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment, Environ. Sci. Technol. 43, 2072 (2009).
[3] Xianzhong Lin, Jaison Kavalakkatt, Martha Ch. Lux-Steiner, and Ahmed Ennaoui, (2015) “Inkjet-Printed Cu2ZnSn(S,Se)4 Solar Cells, Advanced Sciences, 2, 1500028 (1–6).
-
-
-
Study the Potential Use of Waste Water Grown Microalgae Biomass as Biofertilizer
Liquid wastewater streams that contain nitrogen must be treated before being discharged into the environment to prevent eutrophication. Already there are several existing conventional treatment technologies that can remove the nitrogen from the wastewater in combination of multiple processes. Depending on the processes involved, a fraction of nitrogen will be released to the atmosphere. On the contrary, there are several types of microalgae have the voracious demand of nitrogen and can assimilate waste bound nitrogen in a single step mostly as intrinsic proteins. Once the microalgae are separated from the water the minerals inside the microalgae cells remain available for plants and it can be used as fertilizer for the plants. Furthermore, removal of microalgal biomass from the wastewater at the end of the process may completely, or at least partially, treat the waste water minimizing the processes and cost of conventional treatment processes. Qatar's climate and non-arable land are ideal combinations for cultivating microalgae. The harvested microalgae can be dried and stored for future growth of fodder plants. On theory, every kg of microalgae biomass will require 1.73 kg of CO2. Some of the microalgae can also utilize specific organic carbon sources that are available in wastewater. However, the concentration of available organic carbon in the wastewater is not sufficient to support complete removal of nitrogen by microalgae. Hence, carbon dioxide must be supplied for complete and faster treatment. As the minerals will be utilized by the fodder plants, a fraction of the organic carbon associated with the microalgae biomass will be locked in the soil and thus increasing the soil's organic content. Therefore, successful application of wastewater grown microalgae biomass as biofertilizer can provide (1) a cost and energy effective wastewater treatment process, (2) nutrients (N, P and other minerals) recycling, (3) sustainable and environmental friendly agricultural application, and (4) carbon sequestration. Algal technology group of Qatar University is growing microalgae biomass in large scale open ponds. Mineral composition of a marine microalgae, Chlorocystis sp., biomass was characterized as 3.45? N, 0.22? P, 2.78? Ca, 0.39? Fe, 0.01? Cu and 0.02? Zn. Currently, this biomass is used to study its application as biofertilizer for the growth of sorghum plants. Soil was mixed with microalgae biomass and 5 kg of the soil mix was added in each pot. Three different microalgal biomass concentrations were applied in peat soil: 1.5 g/l, 3 g/l and 4.5 g/l. In another pot 3 g/kg NPK fertilizer was added while in another pot there was no inclusion of any fertilizer. Currently, each pot is irrigated with freshwater twice a week and the experiment will continue for two months. In parallel, Scenedesmous sp., a local fast growing freshwater microalgae, is currently being grown in wastewater collected from a small wastewater treatment plant, with an aim to be used as biofertilizer. The mineral composition of wastewater-grown Scenedesmous sp. will be determined and used as appropriate ratio for growing sorghum plants. Results obtained for different fertilizers (i.e., 1. NPK, 2. marine microalgae biomass, and 3. Wastewater grown microalgae biomass) will be compared in terms of plant growth, residual minerals in the soil.
-