- Home
- Conference Proceedings
- Qatar Foundation Annual Research Conference Proceedings
- Conference Proceeding
Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1
- Conference date: 22-23 Mar 2016
- Location: Qatar National Convention Center (QNCC), Doha, Qatar
- Volume number: 2016
- Published: 21 March 2016
61 - 80 of 656 results
-
-
Laboratory Scale Arrangement for Experimental Studies of Drill-String Motions
Authors: Meryem Kanzari, Mohamed Youssef Al-Qaradawi and Balakumar BalachandranBackground & Objectives
Drilling systems are used to identify geological reservoirs and carry out extraction of oil or natural gas from these reservoirs. Deep wells are drilled by using rock-cutting tools driven from the surface by a slender structure of pipes called a drill string. These slender rotating structures can experience undesired dynamics, which can be detrimental to the drilling system. As an example, it is mentioned that stick-slip oscillations can be an important cause for drilling inefficiency and failure of drill-string components, as violent torsional motions and large amplitude lateral motions can occur during these oscillations. As a step towards the development of appropriate vibration attenuation schemes, it is intended to study the nonlinear behavior of slender rotating structures representative of drill strings. In particular, efforts underway at Qatar University to develop a laboratory scale experimental arrangement to study these structures will be presented and discussed. Prior efforts undertaken in this area will also be briefly reviewed. Brief Review and Qatar University Experimental Arrangement Drill-string motions are important to understand the complex system behavior of a drilling system, in particular, as they relate to downhole vibration phenomena. As shown in Fig. 1, the drill string is a complex, flexible structure, which consists of hollow steel pipes screwed together to form a long continuous structure. Large diameter sections, which are referred to as stabilizers, are inserted between two drill pipes to help keep the drill string centered in the borehole. The base of the drill string is made up of two main components, namely, the drill collar and the drill bit. The drill bit, a tool which breaks down the rock and soil, is secured at the end of the drill-collar assembly. The composition of drill pipes, stabilizers, and drill collars is referred to as the bottom-hole assembly (BHA). The entire drill-string assembly is rotated at the surface by using a rotary table and a motor. This actuation is transmitted down the drill string and to the drill bit, which acts to crush the rock and soil. Throughout the drilling process, a hydraulic fluid, known as drill mud, is pumped down through the center of the drill string and collars. This drill mud serves two purposes. It not only keeps the drill bit cool and lubricated, but it is also used to wash away the soil and cut rock. After the mud flows through the drill-strings and the collars, it flows then in the annulus between the drill-string and borehole carrying the cuttings to the surface. During operations, a drill string can experience a whole range of vibrations, including axial, torsional, and lateral vibrations. Drill-string vibrations are sometimes further grouped together as vibrations without contact without the borehole, whirling motions (forward and backward) during which there can be rolling and sliding contact with the borehole, and snaking motions which are a form of lateral vibrations during which a part of the drill string rolls over a borehole contact point. Given that drill strings are long, slender structures, the first torsion natural frequency and the first bending natural frequency are typically in close proximity. In addition, the nature of the system allows for coupling and energy exchange between torsional and lateral motions. In order to focus on the behavior of drill strings in the BHA region, a number of studies have been conducted, with several including studies with scaled laboratory scale arrangements. A partial list of references is included at the end of this paper. Focusing on some of them from this list, in earlier work conducted at the University of Maryland, Liao (2011), Liao, Balachandran, Karkoub, and Abdel-Magid (2011), Liao, Vlajic, Karki, and Balachandran (2012), the focus was on stick-slip motions and whirling. Comparisons were made between experimental and numerical results. It was shown that the nonlinear nature of the contact force interactions is critical for capturing some of the associated phenomena. In a follow up study conducted by Vlajic (2014), forward and backward whirling motions were explored and the development of appropriate reduced-order models was continued. In the work carried out by Shyu (1989), which include validation with laboratory and field studies, a focus was on the coupling between lateral and axial vibrations. Later motion instabilities were experimentally investigated in the work of Berlioz, Der Hagopian, R. Dufour, and E. Draoui (1996). Other notable examples include the studies of Antunes, Axisa, and Hareux (1992), Kust (1998), Mihajlovic (2005), Gao and Miska (2008), and Khulief and Al-Sulaiman (2009). These studies will be reviewed during the conference presentation. In order to build further on previous experimental efforts and related analytical and numerical studies, efforts are underway at Qatar University to build a laboratory scale arrangement to focus on stick-slip oscillations and whirling. Some representative motions of interest are shown in Fig. 2. The proposed system, which is to be used to capture the dynamics in the BHA region, is also shown in Fig. 1 with dimensions. Details of this arrangement will be presented at the conference. It is expected that the proposed arrangement will help explore stick-slip interactions further and gain insights into different aspects including drilling mud that can be beneficial for drill-string vibration attenuation and realizing desired BHA dynamics.
Keywords
Rotor-stator interaction, Dry friction, Stick-slip motions, Torsional vibration, Whirling
Acknowledgment
The authors would like to gratefully acknowledge the support received from the Qatar National Research Fund for NPRP Project 7-083-2-041, to pursue this collaborative work between the University of Maryland, College Park, MD, USA and Qatar University, Doha, Qatar.
References
Antunes, J., F. Axisa, and F. Hareux. “Flexural vibrations of rotors immersed in dense fluids, Part II: Experiments,” Journal of Fluids and Structures 6 (1), 1992, pp. 3-21.
Berlioz, A., J. Der Hagopian, R. Dufour, and E. Draoui. “Dynamic behavior of a drill-string: experimental investigation of lateral instabilities,” Journal of Vibration and Acoustics 118 (3), 1996, pp. 292-298.
Gao, G. and S. Miska. “Dynamic buckling and snaking motion of rotating drilling pipe in a horizontal well,” SPE Journal 15(3), 2010, pp. 867-877.
Khulief, Y. A., and F. A. Al-Sulaiman. “Laboratory investigation of drillstring vibrations,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223 (10), 2009, pp. 2249-2262.
Kust, O. “Selbsterregte Drehschwingungen in Schlanken Torsionssta”- ben-Nichtlineare Dynamik und Regelung. PhD Dissertation, University of Hamburg-Harburg, Hamburg-Harburg, Germany, 1998.
Liao, C.-M. “Experimental and numerical studies of drill-string dynamics,” PhD Dissertation, University of Maryland, College Park, 2011.
Liao, C.-M., B. Balachandran, M. Karkoub, and Y. L. Abdel-Magid. “Drill-string dynamics: reduced-order models and experimental studies,” Journal of Vibration and Acoustics 133 (4), 2011, pp. 041008-1-041008-8.
Liao, C.-M., N. Vlajic, H. Karki, and B. Balachandran. “Parametric studies on drill-string motions,” International Journal of Mechanical Sciences 54 (1), 2012, pp. 260-268.
Mihajlovic, N. “Torsional and lateral vibrations in flexible rotor systems with friction.” PhD Dissertation, Technische Universiteit Eindhoven, 2005.
Shyu, R.-J. “Bending vibration of rotating drill strings,” PhD Dissertation, Massachusetts Institute of Technology, 1989. Vlajic, N. A. “Dynamics of slender, flexible structures,” PhD Dissertation, University of Maryland, College Park, 2014.
-
-
-
Transient PV System Models for Power Quality Studies
More LessIn recent years, increasing concerns about climate change and the liberalisation of the energy market have provided the necessary impetus for a revolutionary restructuring of the electricity network. Traditional power networks are designed to operate in a passive and unidirectional way as their main functionality encompasses the transfer of energy from the power stations to the customer, with minimum loss. Increased electricity production from renewable energy sources (RES) coupled with energy efficiency lie at the heart of the ambitious targets set by Europe and globally in the quest to curb greenhouse gas emissions and to reach energy sustainability. As a result, complete restructuring of the electricity networks will have to take place in order to accommodate increased penetration of RES and distributed generation (DG) which is associated with electricity production from RES. Especially in regions with high solar irradiance, the penetration of photovoltaic (PV) systems is expected to increase in the near future as the technology becomes more competitive. High penetration of PV systems will definitely have serious consequences on the operation of the electricity grid and further challenges will arise as penetration levels increase. Thereafter the security and stability of the power system should be considered carefully to identify possible impacts due to uncontrolled deployment. The occurrence of power quality problems is not only negatively affecting utility customers but is also affecting the generated energy from Photovoltaic (PV) systems and the stability of the power system. The severity and frequency of occurrence of power quality issues can be the result of distribution grid topology/dynamics, arising due to high PV system concentration or even abnormal PV system operation. Analytical tools and accurate models of PV systems must be developed in order to evaluate their behaviour in the context of the full network. The utilization of accurate simulation models is of great importance in an attempt to assess the real consequences of localized energy production from distributed energy sources and in particular PV.
A common detailed PV system model is formed by a PV array, an inverter and a power grid interface as shown in Fig. 1.
Figure 1: General schematic of a Detailed Photovoltaic System.
The PV array is affected by the solar irradiance, the temperature and the specific characteristics of the chosen PV module technology. The PV array converts the solar irradiance into DC power which is then delivered to the distribution grid via the PV inverter. A Maximum Power Point Tracking (MPPT) Controller is used to absorb the maximum available energy. The MPPT Controller varies the duty cycle of a DC/DC converter to adjust the voltage at the output of the PV array (DC link A). The DC/DC converter is connected to a DC link (DC link B) of which the voltage is maintained constant by a DC/AC inverter circuit topology. In more detail, the DC/AC inverter is set to inject the power reaching the DC link B into the electricity grid and in that way the DC link B remains constant. A filter is always placed at the output of the inverter to eliminate undesirable harmonic currents produced by the switching operation of the inverter [1].
A generic PV system model for transient studies, the parameters of which can be tuned using transient data is developed in this work. The adopted analysis utilizes existing knowledge to formulate an accurate transient representation that considers the PV system control circuit and dynamics [2], [3]. The model is tuned and validated using transient data obtained from a detailed PV system circuit topology developed in Matlab Simulink via the Nelder-Mead simplex algorithm [4]. Its abstract representation is shown in Fig. 2. The proposed model is actually a three phase representation capable of simulating with sufficient accuracy normal/unbalanced operating conditions and voltage regulation. Harmonics are also incorporated into the model to reveal its capability for use in complete power quality studies.
Figure 2: Proposed Transient Photovoltaic System Model (TPVSM).
This PV system model is able to characterize the transient behaviour of PV systems in a generic way via a parameter estimation process. In addition, it enables the analysis of more aspects of power quality and voltage stability with higher accuracy under balanced and unbalanced conditions. It must also be pointed out that the proposed model is simpler and faster, thus allowing the computationally efficient simulation of complex problems.
Figure 3: Output current response to a step change in active power input.
The transient response of both the detailed and the proposed PV system model during a step change in active power input is shown in Fig. 3 (the reactive power input is kept at a zero value). In the next step, the developed model is used to assess the voltage transient response of a distribution grid busbar (point of common coupling of the PV system with the electricity grid) and the results are shown in Fig. 4.
The comparison is made with the “Theil inequality coefficient”. The specific inequality coefficient provides a measure of how well a time series of observed values compares to a corresponding time series of estimated values. A value of 0 indicates zero difference or perfect predictions, whereas a value of 1 indicates poor model performance. Values lower than 0.3 depict good agreement between estimated and observed data. As can be seen from the results and inequality coefficient in Figs. 3 and 4, good agreement has been obtained between the detailed and the proposed PV system model. It is important to stress that the proposed generic model can been tuned by using experimental data as well.
Figure 4: Transient reponse of voltage during a step change in reactive power reference.
In summary, the proposed generic model is in line with current DG standards as it can be used for studies of voltage regulation/power quality. The aim of the aforementioned research is to enhance the effort of assessing the consequences of high PV penetration and facilitate corrective action with appropriate technical solutions so as to enable the safe and unrestricted deployment of these technologies in electricity grids [5].
References
[1] S.-K. Kim, J.-H. Jeon, C.-H. Cho, E.-S. Kim, and J.-B. Ahn, “Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis,” Sol. Energy, vol. 83, no. 5, pp. 664–678, May 2009.
[2] M. Liang and T. Q. Zheng, “Synchronous PI control for three-phase grid-connected photovoltaic inverter,” in 2010 Chinese Control and Decision Conference, CCDC 2010, 2010, no. 2, pp. 2302–2307.
[3] Z. Xueguang, X. Dianguo, and L. Weiwei, “A novel PLL design method applied to grid fault condition,” in Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, 2008, pp. 2016–2020.
[4] W. Bao, X. Zhang, and L. Zhao, “Parameter estimation method based on parameter function surface,” Sci. China Technol. Sci., vol. 56, no. 6, pp. 1485–1498, 2013.
[5] M. Patsalides, A. Stavrou, V. Efthymiou, and G. E. Georghiou, “A Generic Transient PV System Model for use in Power Quality Studies,” Renew. Energy, 2015, Accepted.
-
-
-
New Selective Adsorbent from Modified Waste Nylon-6 Microfibers for Removal of Boron from Waters
Authors: Teo Ming Ting and Mohamed Mahmoud NasefThe wide spread application of boron in various industries such as glass and fiberglass, ceramics, abrasives, detergents and soaps, fertilizer, enamels, insecticides, semiconductors, cosmetics and pharmaceuticals has left many surface and waste water streams polluted. Thus, there is a growing global demand for new chelating materials and efficient separation systems for removal of boron from different water streams. This is because the existing boron removal technologies are challenged by slow performance coupled with high treatment cost caused by strict low boron concentration required in water bodies and discharged wastewater to meet the newly imposed regulation [1]. Selective adsorbents obtained by modification of polymeric fibres with radiation induced grafting of functionalized monomers are potential materials for improving the performance of current ion exchange systems operated based on granular chelating resins for boron removal to desired low levels [2]. In this work, a new adsorbent having microfibrous structure was prepared by radiation induced grafting of 4-chloromethylstyrene (CMS) onto nylon-6 fibres waste followed by functionalisation with N-methyl-D-glucamine (NMDG) and testing for boron removal from solutions in batch and continuous column modes as schematised in Fig. 1. The degree of grafting (DOG) in the adsorbent precursor was tuned by variation of reaction parameters and and optimum DOG of 130% was achieved at a CMS concentration of 20 vol% in methanol, a total dose of 300 kGy, a temperature of 30 °C and a reaction time of 3 h. A maximum glucamine density of 1.7 mmol/g was loaded in the adsorbent at 121% DG, 10.60% NMDG concentration, 81 °C reaction temperature and 47 min reaction time. The chemical composition, morphology and structural changes in nylon-6 fibres caused by grafting of CMS and subsequent glucamine treatment were monitored by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The thermal properties were determined using differential scanning calorimetry (DSC) and the thermal stability was evaluated by thermogravimetric analysis (TGA). The mechanical properties were investigated with a universal mechanical tester. The obtained fibrous adsorbent displayed an increase in the average fibre diameter compared to original and grafted fibres (Fig. 2). The adsorbent showed 100% removal efficiency for boron removal from solutions at an initial concentration of 100 mg/L, temperature 30 °C, reaction time 2 h and pH of 7. The new adsorbent can also achieve a maximum adsorption capacity of 13.8 mg/g at pH 7, which is 20% higher than that of commercial granular resins. The adsorption isotherm of boron on the fibrous adsorbent was best fitted to Redlich-Peterson isotherm model whereas the adsorption kinetic behaviour is well fitted by the pseudo-second-order model. The new fibrous adsorbent also showed rapid kinetics compared to commercial resin as indicated by the reduction in the adsorption equilibrium time from 60 min for commercial resins to 30 min. The breakthrough curves obtained from column studies conducted under dynamic conditions (initial concentration 10 mg/L and pH 7) shown in Fig. 3 suggest that the fibrous adsorbent is about 2.2 times faster than granular resin. The adsorption capacity of boron remained almost constant after five cycles of adsorption/desorption cycles suggesting a good chemical stability. Considering the essential properties such as high external surface area, rapid kinetics, high adsorption capacity, mechanical strength and chemical stability, it can be suggested that the new fibrous adsorbent obtained from nylon-6 fibres waste is highly promising for boron removal from solutions. The technology developed in this work can be harnessed for preparation of various types of adsorbents for chemical decontamination of industrial waste water, surface water and underground water using a variety of waste polymer materials of different morphologies (fibres, fabric and films).
References:
[1] Nasef, M.M., Nallapan, M., Ujang Z. Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: A Review. Reactive and Functional Polymers 2014. 85, 54–68.
[2] Nasef, M.M., Guven, O. Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions, Progress in Polymer Science 2012, 37 (12) 1597–1656.
-
-
-
Identifying Optimal Design of Office Buildings Using Harmony Search Optimization Algorithm
Authors: Somayeh Asadi, Ehsan Mostavi and Djamel BoussaaEnergy is an expensive and scare resource and the world faces an energy crisis given our dependence on the limited supply of fossil fuels. Similar to other countries, in Qatar, energy consumption and the subsequent production of greenhouse gas emissions are becoming a major challenge that the society is facing. Recent statistics in Qatar indicated that the per-capita use of electricity and production of CO2-emission has been rising continually since 1971. Population growth and industrial development are the main sources of these problems. In 2004, the electricity consumption per capita reached 17000 kWh which puts Qatar as one of the highest energy consumer per capita in the world as it surpasses the average per-capita electricity consumption of the developed countries. Due to the high contribution of buildings in overall energy consumption, building energy performance has become a key approach to reduce energy consumption and the associated greenhouse gas emissions. Since the building energy performance depends on the numerous variables related to the building characteristics, installed equipment, occupants' behavior, and environmental loadings, selecting the most efficient combination of variables is highly complicated. Considering other objectives such as reduction of financial costs and minimizing the life cycle emission will increase the complexity of the decision making process. To solve these problems, different numerical methods such as optimization algorithms are proposed and utilized. Multi-objective design optimization is a powerful tool to assist decision makers identify and implement the most efficient strategies. The multi objective optimization algorithms are capable of determining the proper variables to obtain the optimum design. Therefore, the objective of this work is to tackle the problem of determining the best design by implementing a harmony search (HS) based optimization algorithm to minimize the life cycle cost and life cycle CO2 equivalent emissions of a small office building. Parameters considered in the current investigation model are building materials and their associated thickness in different building components including wall, floor, roof, and ceiling. In addition, different HVAC systems are considered as design variables. HS algorithm was conceptualized using the musical process to identify the perfect state of harmony. HS was initially developed for the discrete variable optimization problems and then expanded to include continuous variable problems as well. Simplicity in implementation and flexibility of the algorithm has increased the utilization of this method in many research fields. In difference with other optimization methods which are usually based on the numerical linear and nonlinear programing methods that require gradient information to seek the solution, HS algorithm does not utilize gradient information. To achieve this objective, price data and emission data are collected and magnitudes of each one calculated according to the simulation results. The first objective is to minimize the life cycle cost of the design. To identify the life cycle cost of each model, the summation of present value of initial costs, operation and maintenance costs, and energy costs are calculated. The data for construction costs are taken from construction handbooks. In this study, the building life is assumed to be 40 years. For the life cycle assessment, all phases of pre-use (extraction, transfer, and processing of materials), use (service and maintenance), and end-of-life (demolishing and transfer of wastes) of the modeled building have been considered. The pre-use phase costs include the material prices, labor costs, replacement, and equipment. The use-phase includes the service energy costs (heating, cooling, water heating, lighting, equipment, etc.) which are determined by the energy simulation. The second objective of this study is to minimize the life cycle emission of the design. The life cycle emission of each design is determined based on the emission of global warming potential (GWP) data of different materials during pre-use, use, and end-of-life. The pre-use emission can be calculated by having the weight of each material used in construction of the building and multiplying with the emission amount per unit weight. The environmental emission data are collected through different LCA datasets such as DEAM and EcoPack. The use phase emission includes two types of emissions: energy related and service-maintenance. For the energy related emissions, the emission factor of electricity consumption is determined according to the location and source of energy generator systems. To calculate the maintenance emission during the use period, a list of materials and mass of each which should be replaced was prepared. The post-use phase energy consumption includes all the emissions related to demolition and disposal of wastes and the regarding data were gathered through life cycle analysis data bases. In order to optimize the process of designing of the small office building in this study, a C++ code which is capable of modifying model characteristics, perform energy simulation, evaluate the results, and identify the next simulation magnitudes was developed. The proposed HS optimization algorithm, first selects and assigns random magnitudes for the initial values of variables. This selection is a random selection through the defined ranges for variables. Then a simulation of the initial model is performed to attain the first sets of results (objective functions). HS algorithm evaluates the objectives and sets the new values for variables for next simulation. The results of next simulations will be compared with results of previous simulations. If the results in each simulation are better than worst solution, worst solution will be replaced by new results. The solution of the optimization problem improves by having multiple simulations gradually. To determine the energy consumption of the building in the use phase, EnergyPlus model of the building including building envelope system details, thermal zones temperature set points, occupants' activity type and schedule, types of HVAC system, equipment loadings, lighting system schedule, and design year weather data was prepared. EnergyPlus is a powerful energy simulation program for modeling building energy performance and capable of modeling multi-zone airflow, thermal comfort and natural ventilation systems, as well as determining the amount of energy was utilized to determine the total building energy consumption. The focus of this study is to determine the optimum building construction materials and their associated thickness as well as HVAC system of a small office building located in Doha, Qatar. Heat pump air to air ventilation system is assigned to this building and zones' temperature set points are fixed on 22 °C for heating and 26 °C for cooling. Running the simulation process parallel to the optimization algorithm evaluation resulted in identifying multiple optimum solutions of building construction materials and their associated thickness as well as HVAC system. In order to offer decision makers the chance to evaluate the tradeoff between cost and emissions, the Pareto front is plotted. In addition, comparing designs with different life cycle costs and emissions resulted in the following conclusions: By comparing the life cycle cost and carbon dioxide emission of different designs, it was concluded that assigning a small modification in life cycle cost can significantly change the CO2 equivalent emissions. Foundations, floors, and ceilings are emitting the highest amounts of carbon dioxide equivalent in building. Using of high emission materials with higher thickness comparing to other construction materials are the main reasons of this contribution. The outcomes of this research, assists designers in identifying the best combination of envelope materials to design energy efficient buildings. It remains for future to investigate the effects of working schedule, and control strategies in optimum design of buildings.
-
-
-
Fungal Diversity in the Arabian Gulf Surrounding Qatar: New Species of Yeasts and Molds
The Arabian Gulf surrounding Qatar is a unique marine environment with high insolation and salinity. Over 2000 strains of yeasts and filamentous fungi were isolated during 4 samplings in the context of a QNRF funded NPRP project. Approximately 1200 of the isolates were yeasts and over 800 were molds. All isolates were identified by molecular barcodes based on the ribosomal DNA. In addition the yeast isolates were also identified by MALDI-TOF MS with success rates varying from 42% [1st batch] to 80% [3rd batch] due to improvement of the yeast panel in CBS MALDI-TOF MS database. Among the yeasts the carotenoid containing red yeasts were abundant together with Candida tropicalis, Debaryomyces hansenii, Clavispora lusitaniae, and Kondoa sp. Also the black yeast genera Aureobasidium and Hortaea were frequently isolated. Among the molds, the melanized genera Cladosporium with the Cl. cladosporioides complex and Alternaria section Alternata were most abundant. Note that melanized and carotenoid containing fungi were the most prevalent fungi isolated, which may relate to the local extreme environmental conditions. Seasonal differences were observed between summer and winter samplings, but also spatial divergence between plots was observed. Potential new species were found in the genera Aspergillus, Penicillium, Alternaria, Cladosporium [all molds], Aureobasidium [black yeasts], Pseudozyma, Rhodotorula/Rhodosprodium and Kondoa [all basidiomycetous yeasts].
-
-
-
Sensitive Spectroscopic Analysis of Isotopes for Characterization of Crude Oil and Well Gas Samples
Authors: Necati Kaya, Jahanur Rahman, James Strohaber, Mahmood Amani and Hans SchuesslerOilfield reservoir characterization with a nonradioactive Kr isotope tracers with collinear fast beam laser spectroscopy (CFBLS) has been developed in our laboratory and has unprecedented sensitivity, selectivity and dynamic range. It provides efficient method of reservoir mapping, which is much safer than commercially available radioactive isotope based enhanced oil recovery approaches. Our approach can be used in far and near borehole surveys and to quantify fracturing efficiency. The analytical system uses mass separation in conjunction with highly selective laser excitation and sensitive optical detection. For similar applications we also implemented a novel optical spectroscopy based on frequency comb lasers (FCL) that have a regular comb structure of millions of laser modes for ultra broad band detection. Especially in the infrared, a plethora of green house and other gases have molecular fingerprint spectra that can be studied with FCL, based mainly on the Er-, Yb-doped fiber lasers with their wavelength ranges extended by optical parametric oscillation processes, supercontinuum or difference-frequency generation. We present our work on trace isotope detection that utilized both techniques. As examples we describe analysis of crude oil and well gas samples based on the research in Qatar, and the monitoring of the methane content of seawater in the aftermath of the oil spill in the Gulf of Mexico. This work was supported by the by the Robert A. Welch Foundation grant No. A1546 and the Qatar Foundation under the grant NPRP 5-994-1–172.
-
-
-
Nature-Inspired Conjugated Molecules for Future Organic Solar Cell Materials
Authors: Haw-Lih Su, Hugo Bronstein, Tobin Marks, Hassan Bazzi and Mohammed Al-HashimiIn 2009, the average energy consumption was about 16.1 TW. 81 % of it was supplied by non-renewable fossil fuels with emission of 29 × 1012tons of the carbon dioxide (CO2) into the atmosphere.1 Predicting the rise of energy consumption, the world is facing an urgent need for environmentally friendly and renewable energy technologies. As the direct exploitation of the ultimate energy source of the earth surface, solar power is a critical objective for our future. With recent $1 Billion investment in the polycrystalline silicon solar cell production, Qatar is clearly building a global leadership position in the alternative energymarketplace.2Current solar materials is primarily based on crystalline silicon, which is expensive on the energy- and water-intensive production processes due to the nature of the inorganic deposition.3 The newly developed large-scale and low-cost materials/technologies are thus needed for the next-generation solar energy production. The earth-abundant, non-toxic organic polymeric materials (“plastics”) have recently attracted much attention because of their cost-effectivity, flexibility, light weight and potential use in large- area flexible devices. In addition, organic active layers offer versatile design space for the polymer architectures, providing potential for layer designs and tunability to suit specific energy supply criteria.3Indigo is the most produced natural dye with a highly planer bis-lactam structure.4 Such kind of planer bis-lactam structures, such as perylene diimide (PDI), 2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione (DPP), and their structure derivatives, have attracted considerable interests as acceptor materials among various optelectronic devices in past decades.3In addition to the structure benefit, its isomer, isoindigo has better conjugate prosperity since its lactam ring conducting with an extended π system throughout the bis-oxindole framework, which results in the strong electron-withdrawing nature alongside their high degree of coplanarity.3,4 Isoindigo was first introduced into organic semiconductors in 20105 and has been widely studied in the following years. More than 100 isoindigo-based molecules had been developed by 2014 and up to ∼7% organic photovoltaic (OPV) efficiencies and 3.62 cm2V-1s-1 hole mobilities in organic field-effect transistor (OFET) have been reached.6,7Among the various modifications of isoindigo-based molecules, the low bandgap donor-acceptor copolymers containing thienoisoindigos (TIIs) and thiazolisoindigos are particularly of interest to us. Replacing the outer phenyl rings of isoindigo with thiophene and thiazole rings, these molecules could further enhance planarity (via S-O interactions) along the backbone,5 resulting in better packing and higher mobilities for both holes and electrons with very low bandgaps through internal charge transfer interactions.Another indigo derivative, 7,14-diphenyldiindolo[3,2,1-de:3′,2′,1′-ij][1,5]naphthyridine-6,13-dione, containing the core of another synthetic dye cibalackrot, is also of interest to us. The cibalackrot was first synthesized by the condensation reaction of nature abundant indigo andarylacetyl chloride in 1914 but its potential usages in semiconductorswas not noticed until 2014.8,9 Our research team is one of the pioneers in this area. Recently, we published a polymer exhibiting OFET devices with holes and electrons exhibiting mobilities of 0.23 and 0.48 cm2V-1s-1, respectively. The OPV device efficiencies reached 2.35% with the light absorbance up to 950 nm, suggesting the potential of this novel monomer unit for implementation in near-IR OPV devices.4 Othercibalackrot containing copolymers are currently being explored.Reference:1. International Energy Agency, Key World Energy Statistics, IEA, Paris, 2011.2. https://www.jccp.or.jp/international/conference/docs/14assessment-of-solar-and-wind-energy-potential-in.pdf3. Guo, X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943-9021.4. Fallon, K. J.; Wijeyasinghe, N.; Yaacobi-Gross, N.; Ashraf, R. S.; Freeman, D. M. E.; Palgrave, R. G.; Al-Hashimi, M.; Marks, T. J.; McCulloch, I.; Anthopoulos, T. D.; Bronstein, H. Macromolecules 2015, 48, 5148-5154.5. Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.6. Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801-1826.7. Dutta, G. K.; Han, A.-R.; Lee, J.; Kim, Y.; Oh, J. H.; Yang, C. Adv. Funct. Mater. 2013, 23, 5317-5325.8. He, B.; Pun, A. B.; Zherebetskyy, D.; Liu, Y.; Liu, F.; Klivansky, L. M.; McGough, A. M.; Zhang, B. A.; Lo, K.; Russell, T. P.; Wang, L.; Liu, Y. J. Am. Chem. Soc. 2014, 136, 15093 − 15101.9. http://www.nano2014.org/thesis/view/4220
-
-
-
Synthesis and Applications of Novel Ladder Polymers for Organic Solar Cells
Authors: Dhananjaya Patra, Jongbok Lee, Hassan S. Bazzi, Lei Feng and Mohammed Al-HashimiGlobal environmental and resource concerns dictate that future energy supply and security will become increasingly dependent upon the development of accessible, sustainable and scalable energy technologies. State-of-art polymer solar cells (PSCs) has been considered as one of the renewable important technologies which can harvest solar energy from sunlight to generate electricity. Intensive research efforts from both academia and industry have been dedicated into solution-processed organic solar cells due to development of the next-generation solar cells technology 1,2. Owing to the readily available carbon feedstock as well as the numerous and flexible synthetic pathways, polymer solar cells (PSCs) gained tremendous attentions over silicon solar cell in the past decay due to low- cost and quick energy pay-back, solution-processable, lightweight, and flexible/stretchable, large area photovoltaic panels. 1,2 So as to achieve the high performance solar cells it is very important to develop novel kinds of active materials, which have to cover entire solar spectrum i.e. from ultraviolet to infrared (IR) regions, suitable molecular energy levels morphologies and high mobilities. Several donor-acceptor (D-A) conjugated polymers are reported recently with photovoltaic performance over 10%. 3 However, in D-A PSC materials have high intrinsic torsional defects, which impacts the negative impact on performance of the OPV devices. The torsional defects partially break the conjugation pathways of the polymers, leading to shortened coherent lengths along the polymer chain and decreased carrier mobilities. Meanwhile, the torsional defects perturb the intermolecular packing of the polymer materials so that the electronic coupling between the polymer chains are interrupted, adding an energy barrier for the charge carriers and excitons to transport within the active layer. 4 Moreover, the torsional defects increase the band gap of conjugated polymers, hence to prevent their photo-absorption in longer wavelength region. Overall the torsional defects often lead to larger π–π stacking distances in the polymer thin film, making the thin film more susceptible to the permeation of oxygen and water, hence decreasing the stability of the overall OPV devices. Our approach looks into ways to overcome the drawbacks raised by torsional defects on a fundamental level. By definition, Ladder polymers consist of cyclic subunits, connected to each other by two links that are attached to different sites of the respective subunits, comparable to a graphene nanoribbon. Consequently, ladder polymers have two or more independent strands of bonds which are tied together regularly without merging to a single or double bond or crossing each other. 4 As a result, ladder polymers have large planar core structures with no torsional defects. Such defect-free feature grants them with rigid and hence highly conjugated core structures. On one hand, the highly conjugated cores not only afford low band gaps that allow strong optical absorption at long wavelength in terms of energy absorption, but also lead to low beta value for coherent tunneling and low activation energy for electron hopping, in terms of charge transport alongside the polymer chains. There were many carbazole-containing organic D-A polymer materials has been demonstrated for high performance solar cell applications and no such types of ladder polymers reported by utilizing carbazole core. 5 Herein, we report the synthesis of fully conjugated carbazole-based ladder polymer with low level of unreacted defects, by utilizing the controlled ring-closing olefin metathesis (RCM) reaction. The designed ladder polymer is well soluble in common organic solvents for solution processability. We also discussed the photo-physical, electrochemical and optoelectronic properties of torsional defect-free ladder polymers.
References
[1] L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, DOI: 10.1021/acs.chemrev.5b00098.
[2] L. Dou, Y. Liu, Ziruo Hong, Gang Li, Y. Yang, Chem. Rev. 2015, DOI: 10.1021/acs.chemrev.5b00165.
[3] J-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, Adv. Mater. 2015, 27, 1035.
[4] A.-D. Schluter Adv. Mater. 1991, 3, 283.
[5] J. Lee, B. B. Rajeeva, T. Yuan, Z. Guo, Y. Lin, M. Al-Hashimi, Y. Zheng and L. Fang, Chem. Sci., 2015, DOI: 10.1039/C5SC02385H.
-
-
-
Morphology, Photoluminescence and Photovoltaic Properties of Laser Processed ZnO/carbon Nanotube Nanohybrids
Authors: Brahim Aissa and Abdelhak BelaidiOne-dimensional nanoscale materials continue to attract much attention, not only for a better understanding of the physical properties at low dimensionality, but also for their potential in nanodevice applications. Carbon nanotubes (CNT) are of particular interest because of their unique molecular geometry and of their excellent electronic, thermal, and mechanical properties. Various carbon nanostructures have been successfully used as templates for the growth of novel hybrid nanomaterials, exhibiting highly interesting and unprecedented properties. These nanohybrids mainly consist of carbon nanostructures (mostly nanotubes) decorated by nanostructures of either metallic or semiconductor materials such as Au, Pt, TiO2, ZnO or SnO2. They are often obtained via various conventional chemical processing or through chemical functionalization approaches. In particular, nanohybrids consisting of carbon nanostructures decorated with ZnO nanoparticles have been shown to be promising for applications such as photocatalysts, field emitters, solar cells, and electro-photonic nanodevices. Here we report the successful growth of zinc oxide (ZnO)/single walled carbon-nanotubes (SWCNTs) nanohybrids using a two-step laser process. First, an ultraviolet (UV) excimer laser (ArF, λ = 193 nm) was used to grow SWCNTs using the UV-laser ablation method. Second, ZnO nanostructures were grown onto the SWCNTs by means of the CO2 laser-induced chemical liquid deposition technique (LICLD). High resolution transmission electron microscopy (HRTEM) revealed that the SWCNTs mainly consist of nanotubes featuring a high aspect ratio (diameter around 1.2 nm and length of up to several microns), while the ZnO nanostructures consisted of various morphologies, including nanorods, polypods, and nanoparticles sometimes with a size as small as 2 nm. On the other hand, the x-ray photoelectron spectroscopy (XPS) spectrum of the as-prepared ZnO/SWCNT sample showed clearly core level peaks of Zn, O and C, while the high-resolution XPS C 1s peak at 284.5 eV was attributed to the graphitic carbon C–C bonds abundantly present in the SWCNTs. The O 1s peak at 531 eV was attributed to O2– in the ZnO crystal lattice (i.e., O–Zn bonds), and the strong peak at 1022 eV could be attributed to Zn2+ (i.e., Zn–O bonds in the ZnO crystal). The observed peaks at 286.2 eV and 290 eV are considered to originate from the C–OH and O–C–O groups, respectively, and the one at about 533 eV was attributed to surface O–C groups. The presence of oxygen components in the high-resolution XPS C 1s spectrum and the presence of carbon components in the O 1s spectrum suggest that oxygen is directly bonded to the SWCNTs structure through the formation of strong covalent bonds between carbon and oxygen atoms, especially when no Zn–C bonding has been detected. However, these XPS data, along with the microscopy results, highly suggest that the growth of ZnO nanocrystals takes place directly on the walls of the SWCNTs through the formation of –Zn–O–C– bonds, as also reported in the case of other metal oxide/CNT composite materials [1, 2]. The ZnO/SWCNTs nanohybrids were found to exhibit a polychromatic photoluminescent (PL) emission, at room temperature, comprising a narrow near-UV band centered around 390 nm, a broad visible to near infrared band (500–900 nm), and a relatively weak emission band centered around 1000 nm. These PL results are compared to those of individual components (SWCNT and ZnO) and discussed in terms of carbon defect density and charge transfer between the ZnO nanocrystals and the carbon nanotubes. In fact, visible PL of the SWCNT is believed to originate from the combination (or at least one) of the three following phenomena: (i) the presence of short single-walled nanotubes which are known to generate a visible PL, (ii) multiple radiative transitions between energy states of the Van Hove singularities (VHS) of the carbon nanotubes, and (iii) the presence of amorphous and/or disordered sp2 carbon which is known to exhibit broad band visible PL. The PL spectrum of the nanohybrids basically combines the emission features of the separate components (i.e. SWCNT and ZnO) with, however, three main differences. Firstly, the PL peak due to the ZnO nanostructures slightly red-shifts to ∼410 nm, while exhibiting some peak broadening (FWHM of ∼55 nm). Secondly, its intensity was drastically diminished by a factor of about 100 (in comparison with that of ZnO alone). Finally, the relatively broad PL peak centered at ∼1000 nm is more defined and slightly increased in intensity. Thus, the observed quenching of the ZnO PL emission when laser-deposited onto the SWCNTs is believed to be due to charge transfer of photoexcited electrons from ZnO nanocrystals to the empty electronic states of the SWCNTs and/or to partial re-absorption into the complex hybrid structures (i.e., lattice distortions and defective nanostructures acting as non-radiative recombination centers). Quenching and red-shifting of the ZnO near band edge (NBE) in UV-excited PL has already been observed but to a lesser extent in electrochemically grown ZnO/CNT deposits [3]. Such charge exchange is highly promising for photovoltaic PV applications, where the photocurrent generated into such hybrid nanomaterials can be collected whenever the underlying SWCNTs network is appropriately deposited and electrically connected. As a matter of fact, the possibility of photocurrent generation by ZnO nanoparticles anchored to chemically functionalized carbon nanotubes in a photo electrochemical cell has been recently reported [4]. In sum, this clear indication of charge transfer occurring between ZnO nanostructures and SWCNTs is paving the way towards the development of novel ZnO/SWCNTs nanohybrids-based photovoltaic devices.
References:
[1] N. I. Kovtyukhova, T. E. Mallouk, L. Pan and E. C. Dickey: Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes. J. Am. Chem. Soc. 125, 9761 (2003).
[2] M. Liu, Y. Yang, T. Zhu and Z. Liu: Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43, 1470 (2005).
[3] R. Zhang, L. Fan, Y. Fang, and S. Yang: Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem. 18, 4964 (2008).
[4] F. Vietmeyer, B. Seger, P. V. Kamat: Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection. Adv. Mater. 19, 2935 (2007).
-
-
-
Quantification of Managed Aquifer Recharge using Passive Thermal Tomography
Authors: Chris Lowry, Thomas Glose and Elsayed FerganyManaged aquifer recharge focuses on increasing the availability of potable water within the subsurface. Under managed aquifer recharge, recycled or excess water is diverted into large infiltration basins that allow water to percolate into the subsurface thus increasing the volume of water within the shallow aquifer. Water can then be extracted during periods of increased demand and provided water security. This widely used technique has low energy costs and can significantly enhance the amount of groundwater recharge. However, infiltration rates can decrease as a result of clogging of sand grains within these infiltration basins and thus increase the percentage of water lost to evaporation. Rapid detection of decreases in infiltration can trigger remedial action in order to prevent further water loss. The research presented here focuses the development of passive thermal tomography; a new technology to (1) quantifying infiltration rates of managed aquifer recharge at meter scale resolution and (2) to determine aquifer heterogeneity within the subsurface. Passive thermal tomography uses temperature as a groundwater tracer to monitor infiltration rates over large areas, such as infiltration basins. The temperature of the surface water in infiltration basins fluctuates due to the daily solar heating and cooling cycle, and the resulting diel signal propagates down into the subsurface. As the rate of infiltration increases or decrease, the thermal signal produced at the land surface will shift at depth as a result of the advective transport of groundwater. Through the monitoring of shifts in the temperature signals at two discrete depths it is possible to quantify the rate of groundwater infiltration. By extracting the amplitude ratio or diel phase-shift at these two depths, recharge rates can be quantified across the infiltration basin. These methods assume vertical and steady flow of water, quasi-steady (cyclic) flow of heat, through homogeneous, isotropic, fully saturated sediments, and temperature measurements collected in a vertical profile. It should be noted that sensitivity analyses have demonstrated the uncertainty of flux calculations due to inaccurate thermal properties and sensor spacing. Uncertainties in both thermal properties and sensor spacing have been evaluated in this research using a fully coupled numerical model. Taking advantage of this natural passive signal, it is possible to detect temporal changes in the daily rate of groundwater recharge as well as seasonal changes, due to clogging of the pores. Using the calculated rates of groundwater infiltration, an inverse, fully coupled groundwater flow and heat transport model is run in order to determine heterogeneity in hydraulic conductivity within the aquifer. Using thermal and hydraulic boundary conditions at the surface and groundwater flux estimates based on the evaluation of amplitude/phase-shits in the thermal signature with depth, it is possible to determine a suite of hydraulic conductivity scenarios that match the true conditions within the aquifer. This inverse modeling approach using thermal tomography allows for the quantification of changes in hydraulic conductivity across the infiltration basin. While groundwater flux is based on a two dimensional grid, the inversion of the numerical model is able to represent a quasi three-dimensional change in hydraulic conductivity. Passive thermal tomography addresses the protection and management of groundwater resources through the quantification of artificial recharge. Current techniques to quantify artificial recharge are either based on point measurements or simple conservation of mass calculations. Through the use of this new technique it is possible to better monitor and maintain artificial infiltration basins in order to support sustainable and secure groundwater resources in Qatar.
-
-
-
The Role of Gene Banks to Preservation Plant Genetic Resources for Combat Food Insecurity in Qatar
Authors: Elsayed Mohamed Elazazi and Salwa D. Al-KuwariQatar is firmly committed to conserving its biodiversity and is party to the Convention on Biological Diversity and within this the Global Strategy for Plant Conservation (GSPC), and has developed its own National Biodiversity Strategy and Action Plan (NBSAP). Based on an assessment of the status of biodiversity in the country, Qatar's NBSAP identified a total of 11 strategic goals that identify the most pressing biodiversity issues in Qatar including; protected areas, agro biodiversity and desertification, scientific research, education and public awareness. Qatar is home to unique and important habitats, but due to changes in land use and increased development, habitat reduction has emerged as a significant threat to its biodiversity. Qatar is distinguished for its diverse flora that consists of nearly 420 plant species which pave the way for the establishment of the basis gene bank. In accordance with the international conventions which Qatar has recently joined and ratified, the gene bank has conducted ecogeographical surveys about the plant genetic resources. As a result of conducting these surveys, a complete set of seed plants of the Qatari plants genetic resources are conserved as well as integrated database is created to facilitate electronic exchange among relevant stakeholders and countries to use the resources for studies, research, food security and development. A conservation plan is addressed to conserve plant genetic resources to face the challenges of food security in Qatar. This plan is based on Qatar national biodiversity strategy and action plan 2004 and Ministry of Environment national strategy projects 2011–2016. In this study, we focus on the project of Plant Genetic Resources Conservation in Qatar, the project has addressed in five key objectives; plant and seed conservation, molecular genetic characterization, training and capacity building, documentation of Qatar plant genetic resources, and increasing awareness of plant genetic resource's value. We reported that genetic resources department “gene bank” have been collected and conserved 210 seed accessions, 2800 herbarium specimens, and 287 Plant sample for Genetic characterization. On the other hand department of agricultural research start developing field gene bank. Plant genetic resources conservation, including all seed processing and treatments in gene bank “seed cleaning, seeds drying, seed quality test, seeds viability test, seeds germination test as well as store seed at storage rooms. Gene bank make available the conserved germplasm (genetic resources) to several groups of breeders, researchers, graduate and undergraduate students, farmers and other stakeholders. On the other side, we implemented several workshops and training courses about seed conservation in gene bank and access to plant genetic resources and sharing of benefits arising from their utilization. Finally, In fact, Qatar does not have a traditional food insecurity “Lack of access to adequate food during the year due to limited of money”. But food insecurity in Qatar means that Limited resources of biodiversity and agriculture biodiversity resources. As well as it linked to self-sufficiency. Finally, Plant genetic resources provided powerful tools for humanity to control our child's future, and yet not too much been at risk for Qatari genetic resources to be unsustainable, so it is necessary to preserve the natural plant genetic resources on which development is based. Plant genetic resources can be helpful in the achievement of a world without hunger “Food insecurity”.
-
-
-
Reduced LPV Modeling and Control of a Solution Copolymerization Reactor
Authors: Nader Meskin, Sandy Rahme, Roland Toth and Javad MohammadpourControlling the operation of polymer reactors is a highly important task that aims at maximizing the production rate and the product quality and also minimizing the transition losses due to the high consumer demands, as well as the tight market competition for producing different grades of polymers. However, the control design task is nontrivial due to the nonlinear behavior of polymer reactor systems which exhibit strong dependence on multiple operating regimes, unstable modes at some operating points as well as time-varying parameters. In this work, linear parameter-varying (LPV) control techniques are considered to control a free radical solution copolymerization reactor. LPV systems describe a class of nonlinear/time-varying systems that can be represented in terms of parameterized linear dynamics in which the model coefficients depend on a number of measurable variables called scheduling variables. The LPV controller synthesis tools extend the well-known methods of controlling linear time-invariant (LTI) systems to control nonlinear systems with guaranteed stability and high performance over a wide range of operation. In this work, the LPV representation of the copolymerization reactor is obtained through a transformation capturing the system nonlinearities in 15 scheduling variables. With this high number of scheduling variables, the design of LPV controller involves two major problems. On one hand, for control synthesis design, the number of linear matrix inequalities (LMIs) to be solved increases exponentially with the number of scheduling variables, hence the problem becomes computationally intractable. On the other hand, overbounding the range of the scheduling variables often renders the LPV model to include some behaviors that are not exhibited by the original plant, which results in conservatism. In order to cope with the high number of scheduling variables, two approaches for reduced LPV model development for the copolymerization reactor are introduced. The aim of this work is to emphasize the capability of the LPV controllers, designed on the basis of reduced models, to provide high performance control of the polymerization reactor by enhancing the settling time of the output and reducing the control effort. In the first approach, the number of scheduling variables is reduced via the parameter set mapping (PSM) procedure based on principal component analysis (PCA). PSM is an effective way to reduce the conservatism in LPV modeling by resizing the scheduling range such that the reduced model matches the original system behavior as closely as possible. With this method, the complexity of the LPV model of the copolymerization reactor is ideally reduced into one scheduling variable, which allows a minimal design complexity. However, the synthesized controllers may not guarantee the closed-loop stability and performance with the full nonlinear model of the copolymerization reactor since they are designed based on an approximation of the nonlinear model. The second method is based on an alternative conversion of the nonlinear model to an LPV form by truncating the state variables that have no significant role in the state evolution. This method is a specific model reduction approach aiming at reducing the complexity, as well as the number of scheduling variables of the model while the input-output behavior of the original system is preserved. The resulting reduced LPV model of the copolymerization reactor has 4 scheduling variables, which is a relatively large number. However, the stability and performance of the original plant are guaranteed with such controller. Once the operating region and the resulting LPV models are determined, a control design methodology is applied on each produced model. For the LPV-PSM approach, LPV H_infty control synthesis is used to synthesize an LPV controller for the reduced LPV model of the reactor. For the reduced order based model, a linear fractional transformation (LFT) based LPV controller synthesis approach is used since it is capable of handling plants with relatively large number of scheduling variables while maintaining low design complexity. However, the implementation of the designed LPV controllers requires the availability of all the scheduling variables, some of which are not measurable in the reactor model. Therefore, an extended Kalman filter (EKF) is designed for the nonlinear model of the copolymerization reactor in order to estimate its state vector. A comparative analysis of the closed-loop performance is done between the synthesized LPV controllers and the model predictive controller (MPC) developed in the literature. The PSM based LPV controller, based on one scheduling dimension LPV model, has shown a better disturbance rejection without either output oscillation or input saturation and a convergence time of 9 hours, which is lower than the reduced order based LPV controller and the MPC controller whose convergence times are 10 hours and 15 hours, respectively. This enhancement in the closed-loop performance is due to the low conservatism of the design by the PSM approach. However, the inability to guarantee the closed-loop stability with the nonlinear reactor model remains the main drawback of the PSM procedure, whereas the stability is guaranteed with the LPV controller based on reduced order LPV model. As a conclusion, a trade-off is illustrated by the low complexity and good performance on one hand, and the stability guarantee of the closed-loop system with the nonlinear model of the reactor on other hand.
-
-
-
Effects of Nitrogen Fertilization on Growth and Physiological Characteristics of Populus Sibirica Seedlings in a Desertification Area, Mongolia
Authors: Yowhan Son, Hanna Chang, Seung Hyun Han, Jiae An and Ji Soo KimArid and semi-arid areas where desertification mainly occurs cover up to 40? of the world's land area. Mongolia is one of the arid and semi-arid areas, which 90? of the land is in effect of desertification. The government of Mongolia recognizes the need of afforestation for combating desertification, however, there are very limited practical afforestation techniques in Mongolia. Nitrogen fertilization, a major technique for afforestation, generally improves growth and physiological characteristics of plants. The optimal fertilizer application scheme may vary by locations due to the different responses of plants to nitrogen fertilization. Therefore, it is necessary to determine the optimal amount and the type of the nitrogen fertilizers for successful afforestation in the desertification area of Mongolia. The objective of this study was to investigate the effects of nitrogen fertilizer (three levels of amount and two types) on growth rate, photosynthesis and transpiration of Populus sibirica seedlings, a representative afforestation species, in Mongolia. In May, 2015, five plots (6 m × 7 m) were installed at about 2 m distance apart and 2-year-old P. sibirica seedlings were planted in each plot; four plots for nitrogen fertilization and one plot for the control. Nitrogen fertilizers were applied to each seedling with 5 g (N1), 15 g (N2) and 30 g (N3) of urea and 33 g of ammonium sulfate (NS; same amount of nitrogen with N2). The number of seedlings in each plot was 22 for the control, 21 for N1, 29 for N2, 30 for N3 and 24 for NS plots, respectively. Each seedling was drip irrigated with 3 L per day for the first month and with 9 L at 3 day-interval for the rest of the period. Soil inorganic (NH4 + and NO3 − ) nitrogen concentration (mg kg− 1), when measured 3 weeks after the fertilization, increased with the increasing amounts of nitrogen applied (Control: 2.16, N1: 4.33, N2: 4.84, N3: 5.97, NS: 5.53). Root collar diameter (RCD) and height of seedlings were measured in May and August, 2015. Growth rate of RCD and height were calculated as the increase of RCD or height from May to August divided by the initially measured value in May. Net photosynthetic rate and transpiration rate were measured by handheld photosynthesis system (CI-340, CID Bio-Science, USA) at 8:00?10:00 in June and at 16:00?18:00 in July (n?3). The differences in growth rate of RCD and height following nitrogen fertilization were analyzed using analysis of covariance and the differences in soil nitrogen concentration, net photosynthetic rate and transpiration rate following nitrogen fertilization were analyzed using one-way analysis of variance (SAS 9.3 software). Growth rate of RCD (?) was significantly higher only in the NS plot (14.99) than in the control plot (10.42). Growth rate of RCD of urea-fertilized plots did not significantly increase compared to the control plot and showed a tendency to decrease as the amount of urea increased (N1; 13.01, N2: 12.97, N3: 11.17). The decrease in growth rate of RCD with the increasing amounts of urea might be influenced by ammonia toxicity. When ammonium ion from urea is converted to ammonia in alkaline soils, ammonia toxicity which restricts growth of plants occurs. Although 33 g of ammonium sulfate (NS) has the same content of ammonium ion as 15 g of urea (N2), the growth rate of RCD was significantly increased in the NS plot. It can be explained that ammonium sulfate decreased soil pH which resulted in the decline of ammonia toxicity and improved uptake of nitrogen by roots. Growth rate of height (?) was 8.47 for the control, 8.42 for N1, 10.30 for N2, 9.29 for N3 and 8.74 for NS plots, respectively. There were no significant differences in growth rate of height among plots. It was related to the fact that trees concentrate more on diameter growth than height growth in arid environments. In June, net photosynthetic rate (μmol m− 2 s− 1) was significantly higher in the N2 (10.79) and NS (11.15) plots than in the control plot (4.05). There were no significant changes in net photosynthetic rate among plots in July, however, net photosynthetic rate showed relatively high values in the N2 (14.26) and NS plots (15.20), similar to the result of June. It seemed that nitrogen fertilization increased net photosynthetic rate. However, net photosynthetic rate was lower in the N3 plot, which had the highest amount of nitrogen, than in the N2 and NS plots. The reason for the lower net photosynthetic rate of the N3 plot can be related to the fact that excessive nitrogen decreases photosynthesis. In June, nitrogen fertilization significantly increased transpiration rate (mmol m− 2 s− 1) compared to the control plot (0.68). Transpiration rate of fertilized plots was highest in the N2 plot (2.79), followed by N1 (2.46), N3 (2.03) and NS plots (1.89). Transpiration rate in July revealed no significant differences among plots. Generally, transpiration rate might be increased by nitrogen fertilization with the increase of photosynthesis. However, the change of transpiration by nitrogen fertilization was significant in June, but not in July. It can be explained by the fact that the increase of transpiration occurs at the early stage after nitrogen fertilization. Growth rate of RCD was only increased in the NS plot, although net photosynthetic rate of the N2 and NS plots were higher than that of the control plot. This result might be related to the high transpiration rate of the N2 plot. It was reported that transpiration was decreased in order to reduce the water loss in dry environments. Although our study site is also a dry environment, transpiration was increased by nitrogen fertilization. We speculated that water stress caused by the increase of transpiration limits growth of seedlings. In conclusion, the response of growth and physiological characteristics of P. sibirica seedlings differed with the amount and the type of nitrogen fertilizer. 15 g of urea increased net photosynthetic rate and transpiration compared to other amounts of urea, but growth rate of seedlings did not differed with the amount of urea. Thus, the optimal amount of urea cannot be determined with the three amounts (5 g, 15 g, 30 g) used in this study. Ammonium sulfate and urea which have the same amount of nitrogen increased net photosynthetic rate. However, growth rate of seedlings was increased by ammonium sulfate. Ammonium sulfate seems to be more suitable fertilizer than urea for the early growth of seedlings in the desertification area of Mongolia. However, the effects of urea and ammonium sulfate on growth and physiological characteristics of P. sibirica seedlings were different. Therefore, further studies would be necessary to determine the optimal amount of ammonium sulfate.
-
-
-
Carbon Emissions Policies and its Impact on the Design of Supply Chains
Authors: Shaligram Pokharel, Zhitao Xu and Adel ElomriCarbon emission is a concern across the industry due to its environmental impact. In order to reduce carbon emissions, industry have to look not only at their processes but also in the generation of emissions in the whole supply chain that it belongs to. This is more necessary when various forms of carbon emissions policies are faced by the industry. The current focus on research is either in the economics of supply chain or mainly on the forward or reverse supply chains when it pertains to the carbon emissions. However, as lifecycle of the product is also becoming important, the isolated treatment of supply chains should be avoided for an integrated (forward and reverse) supply chain, also called the closed loop supply chain (CLSC). The complexity arises when the supply chain is faced with different kind of carbon policies implemented by the governments, for example, carbon tax, carbon cap, and carbon-cap and tax. The design of CLSC may change with the change in the carbon emission policy. In this research, a stochastic model is developed for the design of a CLSC by considering carbon emission policies. This work is one of the first attempts to understand the implication of carbon emission policy on the design of a CLSC. The model is applied to a sample case of aluminum industry with a life cycle assessment of emission.
Our preliminary findings include:
(1) When the more scenarios are taken into account, the total cost and emission would increase, because more uncertain information is considered in CSSC design.
(2) Given the same carbon cap, in a broad sense, the amount of emission credit traded in market changes in line with the total emission. It indicates that the emission trading is determined by the actual emission rather than the carbon price, even the uncertain carbon price is considered. However, a higher emission does not always lead to a bigger amount of emission to be traded.
(3) The network structure obtained by the deterministic formulation is not able to be easily adapted to changes in demand and supply.
(4) In order to deal with the uncertain demand, the CLSC has to enlarge its handling capacity by using the facilities with a higher capacity or incorporating more facilities with the same function. With the same purpose, the supplier selection decisions are also changed associate the increasing scenarios.
(5) The fuel of diesel is selected regardless of the scenarios. It means the current carbon price level would not motivate the firms to gain profit or reduce costs by employing future fuels in transportation. This conclusion is also proved by the further investigation when the total cost and emission are observed under decreasing cap. A further investigation reveals the transportation mode doesn't change when the carbon price increase from 9 to 234. Consequently, the future fuels would be attractive to firms only when the transportation price reduced or other policy environment changes, such as government subsidy. The efforts in reducing the transportation cost with future fuels have never ceased and the advanced technologies in automobile industry provide opportunity for green transportation promoters.
-
-
-
Exceptionally High CO2 Capturing Capacity of Porous Organic Polymers
Authors: Ruh Ullah Saleh, Mert Atilhan and Cafer T YavuzPre-combustion flue gas capture has been emerged as an efficient alternative to circumvent the costly procedures of materials regeneration utilized by the energy industry for CO2 capture and separation. Stability of the porous structure and repeated use at high pressure and high temperature are among the essential requirements for the efficient materials to be used for industrial level CO2 separation. Herein we report the CO2 adsorption-desorption performance of nanoporous covalent organic polymers (COPs), which can operate efficiently and repeatedly at elevated pressure of 200 bars and above. Since, pre-combustion capture also requires removal of hydrogen along with CO2; therefore, nanoporous COP was also tested for hydrogen removal at high pressure. COP material prepared with simple technique from building block monomers of cyanuric chloride and linked with 1,3-bis(4-piperidinyl)propane has enough surface area and pore volume which makes the material capable to store large quantity of syngas at high temperature and pressure. Results indicated that the newly synthesized COP material can adsorbed exceptionally large quantity of CO2 and very little hydrogen at 200 bars and 35°C. Additionally, the adsorption isotherm was exactly matched with the desorption isotherm, suggesting the material has excellent adsorption-desorption characteristics. Similarly, the material has shown very stable performance when used repeatedly and alternatively for CO2 and hydrogen after regeneration at 50°C. The capturing performance of material was also investigated for other gases like methane and nitrogen at various pressures and temperatures. Experimental results revealed that COP material has exceptional CO2 adsorption efficiency, very good selectivity, and strong stability and can be manufacture with simple techniques. Lastly, material is economically attractive when it is compared with the commercially available materials and has exceptional performance contrary to activated carbon, metal organic frame work and monoethanole amine.
-
-
-
Polyisobutylene (PIB)-NHC Supported Catalysts for Cross-Coupling Reactions: A Green and Sustainable Protocol
N-Heterocyclic Carbenes (NHCs): Over the last two decades N-Heterocyclic carbenes (NHCs) have immensely attracted chemists in nearly all fields of chemistry. N-Heterocyclic carbenes are commonly encountered in coordination chemistry, they are extensively used as ligands for organometallic complexes. Perhaps the biggest hit of NHCs ligands was their use in Grubbs II catalyst for olefin metathesis chemistry. It is noteworthy that the success of NHCs ligands in catalysis is due to several factors favoring their high activity, selectivity and stability when compared to the phosphine counterparts in Grubbs I catalyst [1]. Supported Catalysts: Increased environmental and health awareness requires that designing new metal-catalysts should focus not only on increasing activity and selectivity but also on finding new strategies that help chemists recycle and separate the metal-catalyst from the reaction mixture. In general, homogenous catalysis is preferred over heterogeneous catalysis. This is due to the higher turnover number, better selectivity and usually lower operating temperatures required. On the other hand, heterogeneous catalysis has the advantage of the ease of separation of the catalyst from the final products and is generally less expensive. One important strategy is to use catalysts attached to a heterogeneous support and separate them from the products by simple filtration. Alternatively, homogeneous catalysts that can self-separate from the products by selective solvent extraction would be of great interest. The frequency of their reuse would be environmentally beneficial and to a higher extent this should overcome the lower activity of conventional heterogeneous catalysts. Metal catalysts that can self-separate from the reaction mixture are of great importance due to the reduced metal leaching into the product mixture. In addition, their reuse and recovery make this overall process much greener compared to the conventional homogeneous/heterogeneous catalysis systems. Ever since Herrmann et al. [2] reported the polystyrene supported NHC-palladium catalyst, studies have largely been focused on the use of polymeric supports for NHC-palladium catalysts. While polyethylene-glycol-supported catalyst can be extracted with a polar solvent, Bergbreiter et al. [3] and others have showed that polyisobutylene (PIB) is a useful support for ligands and their metal catalysts (Pd, Ru…) having preferable solubility towards solvents with low polarities such as hexanes, heptanes and decanes. In all of these biphasic systems for cross-coupling/olefin metathesis, the design is mainly focused on the recovery and the reuse of the supported catalysts. Biphasic catalysis having thermomorphic behavior have witnessed great developments due to their temperature-dependent miscibility [4]. While reactions in these biphasic mixtures can be conducted under homogeneous conditions at high-temperatures, the supported catalysts and the products/by-products can be efficiently separated by restoring the biphasic conditions at a low-temperature (Scheme 1). Herein we report the synthesis of new PIB-supported N-heterocyclic carbenes ligands having two different frameworks and their Pd-complexes, 1 and 2. The use, recovery and effectiveness of catalysts are detailed in both Heck and Suzuki cross-coupling reactions (Scheme 2). Metal leaching to the polar phase will be discussed too. Scheme 2: Heck cross-coupling and Suzuki cross-coupling using catalysts 1 and 2.
References:
[1] Scholl, M.; Ding, S.; Woo-Lee, C.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
[2] Schwarz, J.; Böhn, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773–1780.
[3] (a) Bergbreiter, D. E.; Su, H-L.; Koizumi, H.; Tian, J. J. Organomet. Chem, 2011, 696, 1272. (b) Bergbreiter, D. E.; Tian, J. Tetrahedron Lett. 2007, 48, 4499–4503.
[4] J. A. Gladysz, Dr. C. Rocaboy Chem. Eur. J. 2003, 9, 88. (b) Al-Hashimi, M.; Hongfa, C.; George, B.; Bazzi, H.S.; Bergbreiter, D. E. J. Polym Sci Part A: Polym. Chem., 2012, 50, 3954. (c) Al-Hashimi, M.; Abu Bakar, M.D.; Elsaid, K.; Bergbreiter, D. E.; Bazzi, H.S. RSC Advances, 2014, 4, 43766.
-
-
-
Effect of Salinity on the Viscosity of Water Based Drilling Fluids at Elevated Pressures and Temperatures
More LessDue to the continued growth in hydrocarbon demand, operators in the oil and gas industry are always looking to drill deeper wells in order to access previously unattainable hydrocarbons. High-Pressure High-Temperature (HPHT) wells are now broadly present in places like the Gulf of Mexico, the North Sea, and the Middle East. At such conditions, the effect of salts on the properties and performance of water-based drilling fluids cannot be reliably extrapolated from moderate conditions.
Oil and gas wells are referred to as HPHT wells if their bottomhole conditions are greater than 300°F (150°C) or 10,000 psi (69 MPa). As drillers get into HPHT formations, a number of unique problems are introduced. Well control, for example, becomes more complicated due to narrow pressure margins and higher bottomhole pressures and temperatures.
As a result, this research aimed to test and investigate the rheological behavior of various water-based drilling fluids with a variety of different salinities at HPHT conditions using a state-of-the-art HPHT viscometer. The main equipment for these experiments is CHANDLER Model 7600 High Pressure High Temperature Viscometer. There are only 8 such equipment that exists in the whole world and our university in Qatar has one of them. Working on this experimental research will train the participating students to use one-of-a-kind high end viscometers in the world. The parameters that are gauged in this experiment are viscosity, yield point and gel strength of the drilling fluid when subjected to these conditions. To model this experiment, water based muds of varying salinity were experimented with two different types of salts – NaCl and CaCl2. Also, two percentages, 15 and 25, of each of these two salts are proposed to be used in formulating the water-based fluid samples which corresponds to approximately 9.3 and 10.0 ppg. 25? concentration of NaCl will result in full saturation of the water-based fluid system and thus this percentage represents a maximum value. 15? concentration, however, can represent a middle value between the maximum concentration (25?) and the minimum (0?). Overall, the results attained in this experiment were useful in coming to several conclusions regarding the effects of salinity on the rheological properties of water-based mud. As shown in Fig. 4, the average dial reading increases with the set pressure. It levels off at a maximum pressure of 18,000 psi and then decreases. This was the case for all the samples apart from the CaCl2 at 25?. Salinity is the total of all non- carbonate salts dissolve in water, unlike chloride concentration that represented only by its content. Therefore, the summation of all the salts in the mud can be expressed by salinity. Amani and Hassiba (2012) performed HPHT tests on water-based drilling fluids containing different concentrations of Sodium and Potassium Chloride (NaCl and KCl). They showed that the fluids with these salts followed the Power Law model up to pressures of 20,000 psi. Above that pressure, the shear rate started to vary linearly with shear stress (best modeled by the Bingham Plastic equation). In the presence of different kinds of salt additives to initially increase the weight of the mud, the junction to the point of separation between water and other solids creates and breaks the stable suspension and produces flocculation.
Therefore, at the end it will decrease the viscosity of the mud. Up to some extent, modified starches becomes anionic and free in hydrated water. The flow properties of the drilling fluid must be controlled so that the fluid can function properly. Properties of the fluid such as the plastic viscosity and the yield stress are very important for the success of the rotary-drilling operations and are therefore constantly measured. Viscosity is the measure of a fluid's resistance to flow and is defined as the ratio of shear stress to shear rate. Newtonian fluids are fluids where the proportionality between the shear stress and the shear rate is independent of the shear rate. Newtonian fluids are usually water or fluids with low molecular weight material. However, most drilling fluids are non-Newtonian and experience shear thinning with increased shear rate as shown in Fig. 20. The Bingham plastic and the power law rheological models are non-Newtonian models that were used in the past and are still used today to approximate the behavior of drilling fluids and cement slurries. The majority of the behavioral models for drilling fluids and cement slurries used today include a yield stress. One of these rheological models that fits this kind of behavior at both high and low shear rates is the Herschel-Bulkley model.
The mud was found to start losing its intrinsic properties at 24,000 psi and the concentration of Calcium Chloride was found to have a more profound impact on the rheology than Sodium Chloride. Out of the used rheological models, Herschel-Bulkley had the best fit and could be used to predict the viscosity. Although the cost of calcium chloride is more than sodium chloride per unit, it is still feasible to use this salt as it has a profound effect on the shear stress and other rheological properties of the fluids. In future iterations of this experiment it would perhaps be more useful to record more data points for the salinity level. Observing the results for more salt concentration levels will give a clearer picture of the effect of salinity on the rheological properties of the fluids. Acknowledgement: “This report was made possible by a UREP award [UREP 13-031-2-014] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author.”
-
-
-
Center for Advanced Materials, Contribution to “Research for the Future” Road Map at Qatar University The Journey from 2008 to 2015
More Less“Research for the future” is the roadmap of research at Qatar University for 2014–2019 [i]. It identifies the research priority themes based on Qatar's needs and on National Development Strategy 2011–2016. The following themes are the research priorities of Qatar University 1) Energy, Environment and Resource Sustainability, 2) Social Change and Identity, 3) Population, Health and Wellness and 4) Information and Communication Technologies. This strategy is also aligned with the Qatar National Research Strategy 2012 with a vision for Qatar to be a leading center for research and development excellence and innovation [ii]. Materials Science is the heart of economic growth as it is related to all areas of energy, environment and sustainability. This presentation will show the Center for Advanced Material (CAM) as a leading model for theme number one “Energy, Environment and Resource Sustainability”. CAM has grown from a small unit with five people in 2008 to a state-of-the-art center that has more than fifty-five members in 2015 working in various leading projects, this includes a high contribution of female scientists. This number does not include the students, short period visitors and daily visiting QU members. Examples of current research projects in the Materials Science and Nanotechnology subtheme will be presented. This will include research done in collaboration with the industry, mainly local oil and gas industries, and international institutes around the world. Projects such as corrosion protections, energy conservations techniques, medical application and sustainable materials are some examples. Emphasis will be made on emerging trends in technology to manipulate the atoms at the nano level for various technology applications. These improvements in this small scale can lead to improvement in the performance of traditional materials to reduce the energy consumption and cost. The state-of-the-art equipment and high quality accredited labs will also be shown. The presentation will explain a wide range of equipment in synthesis, processing and characterization stages. Graduate and undergraduate students' involvement in the activities as part of their courses, thesis dissertations or working as RAs in projects will be shown. Scientific trips to external institutes and industry as well as continuous exposure of the students to the local industry improved their learning abilities. The presentation will also show selected projects contributing to the other themes, especially in the Health and Wellness. This will include new synthesized nanoparticles that can fight the diseases such as cancer and new biomedical nanofibres for medical applications. Social Change and Identity is another priority that CAM is contributing through many leading projects such as the WISE 2015 wining project AlBairaq and the archeology studies in collaboration with the Qatar Museum Authorities.
Qatar National Research Strategy, Qatar University Research road map, Center for Advance Materials, Nanotechnology
[i] Research for the Future, Road map of research at Qatar University 2014–2019.
[ii] Qatar National Research Strategy (QNRS) 2012.
-
-
-
Synthesis and Characterization of Functionalized Silica-Nanoparticles and their Applications for the Removal of Pesticides from Aqueous Solution
Authors: Khalid A. Al-Saad, Ahmed A. Ramadan, Md F Rakib and Abdullah A. Abul Baker1. Abstract: Silica nanoparticles functionalized with three different active functional groups (C-8, cyano-propyl, and methacrylate (MA)) were synthesized, characterized and applied for the removal of ten carbamate pesticides from aqueous solution. Two methods were used for the synthesis of functionalized silica (grafting and sol-gel method). SEM, FTIR, and HCN were used for the characterization of the particles, while LC-MS/MS was used for the quantitative analysis of carbamate pesticides in the non-treated and treated aqueous solutions. The characterization results indicated the formation of uniformed, spherical and mono-dispersed particles when the cyano and MA particles were prepared by the Sol-gel. Also, results indicated that all of the synthesized particles were enhances for the removal of carbamate pesticides, and MA prepared by the Sol-gel methods had the highest ? removal for most of the carbamate pesticides tested. 2. Introduction: Active functional groups such as C8 and cyano-propyl have good recovery and can selectively react with carbamate pesticides [1]. Also, previous works [2] have shown that methyl methacrylate have some selectivity and high efficiency to bind with carbamate pesticides. Yet, investigations are still needed to improve the selectivity and efficiency of solid phase extraction via surface modifications. Successful identification of the host functional groups that will selectively react with the guest (contaminant or analyte) will be highly important for the purpose extraction and quantification of the specific analyte. Also, the success to immobilize host molecules that react specifically with pollutants in aqueous solution will allow the remediation of water. The objective of this work is to prepare modified silica-nanoparticles by immobilizing reactive functional groups as hosts on the surface of these particles and to characterize and apply these particles for the removal of pesticides from contaminated water. 3. Experimental: 3.1. Material
All the reagents and chemicals used in this study were obtained commercially from Sigma-Aldrich company. The chemicals used were methanol LC-MS grade, octyl-triethoxysilane, 3-cyanopropyltrimethylsilane, trimethylsilyl-methacrylate, silicon dioxide nanoparticles, xylene, hexane, ammonium hydroxide, 3-methacryloxypropyl trimethoxysilane, tetra-ethoxysilane, ethanol, and carbamate standard (46856-U). Using these chemicals, five particles were synthesized: 1. silica grafted with cyano-group; 2. silica grafted with methacrylate particles; 3. silica grafted with C8; 4. cyano-particles synthesized by Sol-gel method; and 5. propyl methacrylate particles synthesized by sol-gel method.
3.2. Preparation of particles
The particles were prepared following previously developed methods by other scientists [3,4].
3.2.1. Preparation of cyano grafted particles Prior to preparation, the silicon oxide (SiO2) was activated by heating overnight. 5.0 g of the activated SiO2 was mixed with 0.347 mL of 3-cyanopropyltrimethyl-silane, and 100 mL of xylene. The mixture was places in sonicator for one hour, and then was heated overnight. After that, the mixture was centrifuged for ten minutes with 5000 rpm. The particles were finally washed with methanol for three times.
3.2.2. Preparation of methacrylate grafted particles 5.0 g of the activated SiO2 was mixed with 0.237 mL of trimethyl-silyl methacrylate, and 100 mL of xylene. The mixture was places in sonicator for one hour, and then was heated overnight. After that, the mixture was centrifuged for ten minutes with 5000 rpm. The particles were finally washed with methanol for three times.
3.2.3. Preparation of C-8 grafted particles 5.0 g of the activated SiO2 was mixed with 0.414 mL of octyltriethoxysilane, and 100 mL of xylene. The mixture was places in sonicator for one hour, and then was heated overnight. After that, the mixture was centrifuged for ten minutes at 5000 rpm. The particles were finally washed with methanol for three times.
3.2.4. Preparation of cyano and methacrylate particles by Sol-gel-method 40 mL of ethanol was transferred into a flask, and both 1.0 mL of ultrapure water, and 25 mL of NH4OH were added to the ethanol. The mixture solution was then stirred for 14 minutes at 4000 rpm. After that, 1.0 ml tetraethyl-orthosilicate diluted in 4.0 ml of ethanol was added to the solution. Finally, the mixture solution above was divide equally into two different bottles. In one of the bottles, 0.578 mL of 3-cyanopropyltrimethyl-silane was added in order to prepare the SolGel-Cyano particles and in the other bottle 0.444 ml of trimethyl-silylmethyl methacrylate was added in order to prepare SolGel-MA particles. 3.3. Instrumentation: The synthesized nanoparticles were characterized by an FEI Quanta 200, USA scanning electron microscope at an accelerating voltage of 3 kV was used for these analyses. Fourier-transform infrared spectroscopic measurements of the samples were obtained in the range from 400 to 4000 cm–1 using a Perkin Elmer Spectrum 400 FTIR with an ATR detector at a resolution of 4 cm–1. The elemental analysis were carried out by using CHN analyzer. Then, the synthesized particles examined for their ability to remove pesticides from water. The pesticides were separated and analyzed by LC-MS/MS (Agilent,1290). 3.4. Pesticide treatments and analysis: Six 15-mL tubes were prepared. 1.0 mL of carbamate in acetone was added into each tube and kept to dry overnight in order to avoid the presence of acetone, which is expected to compete with the particles in extracting the pesticides. Then 2.0 mL of deionized water was added into each tube. One of the tube was kept as control (not treated), while the carbamate solutions in the other five tubes were treated with the five synthesized nanoparticles. 0.25 g of the five different nanoparticles were added to the five tubes. The tubes were vortexed for 1 minute, and left to settle for 10 minutes, and then were centrifuged for two minutes at 4500 rpm. The solutions in each tube were transferred into new tubes and analyzed by LC-MS/MS. 4. Results and Discussions: 4.1. Characterization results
The nanoparticles were synthesized and characterized by SEM, FTIR, TGA, and EDX. The results of SEM indicated the formation of relatively small (nano-size) particles (Fig. 1 a-e). Both the cyano and MA particles that were prepared by sol-gel method appeared to be uniformly and homogenously spherical (Fig. 1 d,e), unlike the other particles, which were prepared by the grafting method. According to the CHN analysis results (Table 1), the amount of C, H, and N elements were relatively high in the particles prepared by Sol-gel methods compared to those prepared by the grafting methods, with highest percentage found in the MMA particles prepared by the sol-gel methods. According to the FTIR results (Fig. 2 and Fig. 3), different patterns were observed for the different synthesized particles and there was indication of OH present in the MMA particles that was prepared by sol-gel method, The different structures of the synthesized particles were clearly in the fingerprint region of the FTIR spectra. 4.2. Pesticide treatments and analysis results: The carbamate pesticides were fully separated as observed in the chromatogram in Fig. 4. Retention times of the pesticides belonging to the chromatogram are shown in Table 2. Also, the table shows the areas of the peaks belonging to the pesticides in the chromatogram before and after treatments with the five synthesized particles. It is clearly observed that the concentration of pesticides significantly went down after treatment with the particles. For most pesticides, the MA particles prepared by the Sol-gel methods showed the highest removal of pesticides. 5. Conclusion: Both cyano and MA particles prepared by the Sol-gel appeared to more uniformed, spherical and monodispersed under the scanning electron microscope and gave higher relative amounts of C, H, and N elements. MA particles prepared by the Sol-gel was the most efficient in removing the pesticides, although all synthetically prepared nanoparticles showed promising result in removing the pesticides. More investigation is required to determine the prober dose of these particles and to examine the effect of pH, temperatures, contact times, as well as the concentration of pesticides. Also, more invistigations are needed to determine the efficiency of these particles to remediate solutions contaminated with other pesticides such orgonophosphorous and chlorinated pesticides. Acknowledgement: This article was made possible by grant QU [QUST-CAS-SPR-13/14-23]. The statements made herein are solely the responsibility of the authors. References: M. Ferna'ndez, Y. Pico', J. Manes, “Determination of carbamate residues in fruits and vegetables by matrix solid-phase dispersion and liquid chromatography–mass spectrometry,” Journal of Chromatography A, 871 (2000) 43–56.
C. Baggiani, L. Anfossi, P. Baravalle, C. Giovannoli, C. Tozzi,” Selectivity features of molecularly imprinted polymers recognizing the carbamate group” Anal. Chim. Acta, 2005, 531, 199.
E. Effati, B. Pourabbas, “One-pot synthesis of sub-50 nm vinyl- and acrylate-modified silica nanoparticles,” Powder Technology, 2012, 219, 276–283.
R. Brambilla, G. P. Pires, J. H. Z dos Santos, M. S. L. Miranda, B. Chorink. “Octadecylsilane-modified silicas prepared by grafting and sol–gel methods,” Journal of Electron Spectroscopy and Related Phenomena, 2007, 156–158, 413–420
-
-
-
Extraction and Analysis of Carbamate and Pyrethroid Pesticides in Tomatoes and Rice by Gas Chromatography Mass Spectrometry
1. Abstract:
This work aimed to explore common methods for the extraction of pesticide and to perform qualitative and quantitative analysis by gas chromatography coupled with electron impact mass spectrometry (GC-EI-MS). Extraction was conducted using QuEChERS and Liquid–Liquid (L–L). Calibration curve and standard addition curve were both plotted for different concentration of mixtures. Additionally, the efficiency of the QuEChERS extraction methods was examined by spiking the organic rice and tomato with standard mixture of pyrethroid and carbamate and applying the extraction. Results showed that, in general, carbamate species (especially the aliphatic types) were eluted at earlier times compared to pyrethroids species. Carbamates were more susceptible to degradation during GC separation compared to pyrethroids. A chromatographic resolution of 3.24 was obtained for the two permethrin isomers. Good linearity of the three quantitative methods (R2 > 0.99) were obtained for most compounds. Based on using the standard addition curve, the recovery for the different pyrethroid and carbamate compounds were determined.
2. Introduction
Pesticides poisoning of farmers are largely attributed to the inappropriate pesticide handling, improper use of personal protective equipment (e.g., gloves, respirators, and masks) and lack of knowledge about the toxicity of chemicals that they contain. Common misuses of pesticides in farming include the use of large volumes or concentration of pesticides than indicated on labels, ineffective use of protective equipment while mixing or applying the pesticides, improper management and disposal of pesticides, and lack of awareness of pre-harvest intervals following application. This causes high level of pesticides residues in fruits and vegetables. Therefore, pesticide management is of great necessity. Common methods used to extract pesticides can be classified into three types: liquid–liquid extraction, solid phase extraction (SPE), and Soxhlet extraction. One important and recently developed extraction method is QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) [1]. QuEChERS offers simple simultaneous extraction and clean-up steps of a wide range of analytes, in both polar and non-polar samples. It is a faster, convenient and cost-effective method than conventional liquid–liquid extraction producing premium results in a few steps with minimum solvent amount used. Two types of pesticides (carbamates and pyrethroids) were the focal points of this research. Carbamates are a group of pesticides which contain carbamic acid backbone. The high solubility of carbamate derivatives allows plants to absorb them by the root and the leaves [2]. Pyrethroids are synthetic insecticides derived from the naturally found pyrethrins. Although pyrethroids are more specific to insects, with less impact on human and environment, they are not widely used because of their short life-time compared to other synthetic pesticides [3–4].
3. Objectives
The primary aim of the research is to explore the use of common methods for the extraction of pesticides from foodstuffs and to qualitatively and quantitatively analyze them by GC-MS method. Calibration curve and standard addition were utilized as quantitative methods. The recoveries of QuEChERS extraction of carbamates and pyrethroids from spiked rice and tomato were evaluated. This work was also aimed to improve the skill of mass spectra interpretation and conducting scientific literature surveys.
4. Experimental
4.1. Instrumentation and operational conditions
GC-MS (Shimadzu QP-2010) was used for the analysis of the pesticides. DB5 (30 m, 0.25 mm, 0.25 μm) column was used for the separation of pesticides. Scanning mode was used to identify the pesticides, while selective ion monitoring mode was used to determine their concentrations. The operational condition of the GC and MS are shown in Table 1 and 2.
4.2. Materials
The standards (Carbamate & Pyrethroids) pesticides were purchases from Dr. Ehrenstorfer GmbH, Germany. The contents of each mixture are shown in Table 3. The QuEChERS kit was purchased from Agilent Technology (U.S.A). The QuEChERS kit (Agilent, U.S.A), consisted of premeasured packet of MgSO4/Na-acetate mixture, and three types of DSP cleanup kit, which came in three different led-colors (red, blue and green), containing MgSO4/PSA DSP in different ratios.
4.3. Preparation of standards for quantitative analysis
Four standard samples containing mixture of both pyrethroids and carbamates were prepared. The standards only differed in concentration (0.125, 0.25, 0.50, and 1.0 ppm). These standards were analyzed by the GC-MS to obtain the calibration curve. The standards were also used in standard addition analysis.
4.4. QuEChERS extraction
About 15 ml of tomato juice was transferred into 50 mL tubes. 15 mL of acetonitrile was added to the tube. The extraction of rice is performed following similar steps, but prior to the addition of acetonitrile, the rice was mixed with equal amount of distilled water. Then the 50 mL tube was shaken for 30 seconds. After that, premeasured packet of mixture (MgSO4/Na-acetate) was added to each tube and shaken again vigorously for 1 min. The tubes were placed in ice for five minutes to allow the liquids to separate in two layers. The upper liquid layer was collected into another 50 mL tube.
4.5. Liquid–Liquid (L–L) extraction
About 200 g of blended tomato was placed in an Erlenmeyer flask. 150 mL of solvent mixture (3:2:1) (n-hexan:DCM:ACN) was added to the sample. The mixture was shaken for about one hour. The two immiscible phases were left overnight to separate into two layers. The upper layer was transferred into graduated cylinders.
4.6. The cleanup steps
Extracts (each one mL) from the two previous extraction procedures (L–L and QuEChERS) were transferred into two dispersive cleanup tubes, containing 150 mg of MgSO4 and 25 mg PSA. The extracts in the tubes were shaken for one minute and centrifuged for 5 min. The extracts were then transferred into vials and stored in the refrigerator, ready to be analyzed by the GC-MS.
4.7. Recovery study of QuEChERS method
For the recovery study of QuEChERS extraction method, the organic tomato and rice were spiked before the extraction with known amount of mixture consisting of carbamates and pyrethroids. The mixture was prepared by mixing 15 mL of carbamates (20 ppm) with 15 mL of pyrethroids (20 ppm) to produce a concentration of 10 ppm for each compound in the mixture. Then, 200 g of organic tomato and organic rice were spiked with 15 mL of the prepared mixture. Based on this spiking, the concentration of each pesticide compound in the tomato and rice before extraction should be ∼0.70 ppm. To determine the concentration of pesticides after extraction, standard addition method was used. The QuEChERS extract was first diluted to half its original concentration. Then the extract was divided into three 1.0 mL portions. In the first, second, and third portion, 0.50 mL of standards mixture with concentration of 0.125 ppm, 0.250 ppm, 0.50 ppm were added, respectively.
5. Results and discussion
5.1. Qualitative and Quantitative Analysis of Pesticides
The chromatograms of carbamates and pyrethroids are shown in Fig. 1 and Fig. 2, respectively. Generally carbamates species were eluted at lower retention time (tr) compared to pyrethroids. Aliphatic carbamate derivatives were even observed at lower tr compared to the aromatic species, and they were more susceptible to degradation. Isomers of both resmethrin and permethrin were very well resolved with resolution > 3. The peaks in the chromatogram can be identified based on their fragmentation and isotopic pattern in the mass spectra by matching the patterns with those available in the GC-MS software library. Two peaks, at 7.08 & 8.85 minutes belong to promecarb. The first peak was attributed to the degradation while the second was attributed to the fragmentation of promecarb as shown in their mass spectra in Fig. 3 (a, b). Observing the parent ion peak at m/z = 207 Da confirm that the mass spectrum in Fig. 3 (b) belong to the fragmentation (not the degradation) of promecarb. Also, logically, the degradation product of any compound is expected to be observed at earlier retention time. It was notices that the C–O bond of the carbamate backbone is more likely to break down. According to Wang and Schnuta [5], carbamates are polar and/or thermally labile and not suitable for GC analysis. Aromatic compounds (resmethrin and permethrin) were less susceptible to degradation as observed, for instant, in the mass spectrum of permethrin (Fig. 4). According to the isotopic pattern, two chloride atoms are present in the fragment at m/z = 163 Da. The proposed fragments for permethrin are shown in the spectrum in Fig. 4.
5.2. Quantitative analysis and recovery results
Calibration curves for all standard pesticides were plotted. Also, standard addition method was used to determine the recovery of QuEChERS extraction method for these pesticides. The unknown concentration of carbamate residues in the tomato extract (after extraction) was determined by adding different concentrations of standards and plotting the curve as shown for 3-Hydroxycarbofuran (3-HCF) in Fig. 5. The lines are extrapolated to obtain the concentrations of the extracts before the addition of standards. The recovery was calculated as following, taking 3-HCF as example. Since the extract before addition of standard was diluted to half of its original concentration, the concentration of 3-HCF in the original extract is calculated as: 0.28 ppm × 2 = 0.56 ppm, where 0.28 is the value intercepted by extrapolation in the x-axis. Then, the recovery was calculateda as follows: Recovery = (Extracted conc/original conc) × 100 = (0.56/0.70) × 100 = 80%. The linearity of the standard addition curves was acceptable, with correlation coefficient (R2) higher than 0.99. The recoveries of the other pesticides were calculated similarly and they are shown in the Table 4.
6. Conclusions
Fragmentation of compounds by GC-MS allowed identification of peaks in the chromatograms. Most of the carbamate compounds degrade in the GC-column, especially the non-aromatic species. The chromatograms illustrate that the non-aromatic carbamate compounds are found at low retention time unlike the aromatic ones. The C-O bond of the carbamate backbone is more likely to break down by either degradation in the GC column prior MS ionization, or fragmentation in the MS via the ionization source. The quantitative analysis is performed chiefly by three methods, which are standard calibration curve, standard addition. All these methods gave acceptable linearity with R2 > 90%. Standard addition is an alternative to the calibration curve technique that is useful to determine compounds in complex matrices and to measure the recovery of extraction methods.
Acknowledgment
This research work was made possible by UREP grant # UREP 13-040-1-007 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
References
[1] Wilkowska A, Biziuk M (2010). Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 125, 803–812.
[2] Gupta RC (2006). Toxicology of organophosphate and carbamate compounds. Amsterdam: Elsevier Academic Press. 673–681.
[3] Mishra D, Tripathi S, Srivastav SK, Suzuki N, Srivastav AK (2010). Corpuscles of Stannius of a teleost Heteropneustes fossilis following intoxication with a pyrethroid (cypermethrin), 6, 2013–208
[4] Palmquist K, Salatas J, Fairbrother A (2012). Pyrethroid Insecticides: Use, Environmental Fate, and Ecotoxicology, Insecticides - Advances in Integrated Pest Management. 251–262.
[5] Wang J, Schnuta W (2011). Quantitative determination of ultratrace Level N-methyl carbamates in rice samples by accelerated solvents extraction (ASE) and Ultrahigh performance liquid chromatography tandem mass.
-