1887
Volume 2021, Issue 1
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

ملخص

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the only zoonotic-origin CoV to reach the pandemic stage, to which neither an effective vaccine nor a specific therapy is available. The spike glycoprotein harbors the receptor-binding domain (RBD) that mediates the virus's entry to host cells. This study aimed to identify novel inhibitors that target the spike protein's RBD domain through computational screening of chemical and natural compounds. The spike protein was modeled from the recently reported electron microscopy protein structure (PDB ID: 6VSB) and the previously described SARS-CoV protein structure (PDB ID: 6ACD and 6ACJ). Virtual lab bench CLC Drug Discovery was used to computationally screen for potential inhibitory effects of currently prescribed drugs (n = 22), natural antiviral drugs (n = 100), and natural compounds (n = 35032). Quantitative Structure-Activity Relationship (QSAR) studies were also performed to determine the leading binders known for their antiviral activity. Among the drugs currently used to treat SARS-CoV2, hydroxychloroquine and favipiravir were identified as the best binders with an average of four H-bonds, with a binding affinity of − 36.66 kcal/mol and a minimum interaction energy of − 6.63 kcal/mol. In an evaluation of antiviral compounds, fosamprenavir and abacavir showed effective binding of five H-bonds, with an average binding affinity of − 18.75 kcal.mol− 1 and minimum interaction energy of − 3.57 kcal/mol. Furthermore, screening of 100 natural antiviral compounds predicted potential binding modes of glycyrrhizin, nepritin, punicalagin, epigallocatechin gallate, and theaflavin (average binding affinity of − 49.88 kcal/mol and minimum interaction energy of − 4.35 kcal/mol). Additionally, the study reports a list of 25 natural compounds that showed effective binding with an improved average binding affinity of − 51.46 kcal/mol. Using computational screening, we identified potential SARS-CoV-2 S glycoprotein inhibitors that bind to the RBD region. Using structure-based design and combination-based drug therapy, the identified molecules could be used to generate anti-SARS-CoV-2 drug candidates.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/qmj.2021.12
٢٠٢١-٠٣-١٢
٢٠٢٤-٠٧-٠٦
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2021/1/qmj.2021.12.html?itemId=/content/journals/10.5339/qmj.2021.12&mimeType=html&fmt=ahah

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382:(8):727–33.
    [Google الباحث العلمي]
  2. Yang W, Sirajuddin A, Zhang X, Liu G, Teng Z, Zhao S, et al.. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur Radiol. 2020.
    [Google الباحث العلمي]
  3. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92:(4):418–23.
    [Google الباحث العلمي]
  4. Arshad Ali S, Baloch M, Ahmed N, Arshad Ali A, Iqbal A. The outbreak of Coronavirus Disease 2019 (COVID-19)-An emerging global health threat. J Infect Public Health. 2020; 13:(4):644–6.
    [Google الباحث العلمي]
  5. (WHO) WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020.
    [Google الباحث العلمي]
  6. Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020; 16:(10):1678–85.
    [Google الباحث العلمي]
  7. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020; 26:(6):729–34.
    [Google الباحث العلمي]
  8. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: Atenei Parmensis. 2020; 91:(1):157–60.
    [Google الباحث العلمي]
  9. Menzella F, Biava M, Barbieri C, Livrieri F, Facciolongo N. Pharmacological treatment of COVID-19: lights and shadows. Drugs Context. 2020;9.
    [Google الباحث العلمي]
  10. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020; 52:(4):583–9.
    [Google الباحث العلمي]
  11. Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al.. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol. 2020; 30:(3):313–24.
    [Google الباحث العلمي]
  12. Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 Vaccine Pipeline: an Overview. Curr Trop Med Rep. 2020:1–4.
    [Google الباحث العلمي]
  13. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016; 15:(5):327–47.
    [Google الباحث العلمي]
  14. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al.. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020; 17:(6):613–20.
    [Google الباحث العلمي]
  15. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al.. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581:(7807):221–4.
    [Google الباحث العلمي]
  16. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018; 14:(8):e1007236–e.
    [Google الباحث العلمي]
  17. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al.. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020; 367:(6483):1260–3.
    [Google الباحث العلمي]
  18. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011; 101:(10):2525–34.
    [Google الباحث العلمي]
  19. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993; 26:(2):283–91.
    [Google الباحث العلمي]
  20. Maiti R, Van Domselaar GH, Zhang H, Wishart DS. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 2004; 32:(suppl_2):W590–W4.
    [Google الباحث العلمي]
  21. Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990; 8:(3):195–202.
    [Google الباحث العلمي]
  22. Chong YP, Song JY, Seo YB, Choi J-P, Shin H-S, Rapid Response T. Antiviral Treatment Guidelines for Middle East Respiratory Syndrome. Infect Chemother. 2015; 47:(3):212–22.
    [Google الباحث العلمي]
  23. ACD/Labs. ACD/ChemSketch Toronto, ON, Canada,: Advanced Chemistry Development, Inc.; 2019 [Available from: https://www.acdlabs.com/.
    [Google الباحث العلمي]
  24. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, et al.. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res. 2018; 46:(D1):D1217–d22.
    [Google الباحث العلمي]
  25. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, et al.. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol. 2007; 25::71.
    [Google الباحث العلمي]
  26. Qiagen. CLC Drug Discovery Workbench 3.0.2 Manual. In: Aarhus Q, editor. Denmark: QIAGEN Aarhus2017.
    [Google الباحث العلمي]
  27. van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003; 2:(3):192–204.
    [Google الباحث العلمي]
  28. Vega Qsar. Istituto di Ricerche Farmacologiche Mario Negri Milano VEGA (based on CAESAR project). version 1.0.8. Avaliable from: http://www.vega-qsar.eu.
    [Google الباحث العلمي]
  29. Chakraborti S, Prabakaran P, Xiao X, Dimitrov DS. The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization. Virol J. 2005; 2:(1):73.
    [Google الباحث العلمي]
  30. HalgrenTA. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem. 1998; 17:(5–6):553–86.
    [Google الباحث العلمي]
  31. Corbeil CR, Williams CI, Labute P. Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des. 2012; 26:(6):775–86.
    [Google الباحث العلمي]
  32. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006; 20:(10–11):647–71.
    [Google الباحث العلمي]
  33. Halgren TA. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Aided Mol Des. 1996; 17:(5–6):553–86.
    [Google الباحث العلمي]
  34. Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol. 2020.
    [Google الباحث العلمي]
  35. Amin M, Abbas G. Docking study of Chloroquine and Hydroxychloroquine interaction with SARS-CoV-2 spike glycoprotein-An in silico insight into the comparative efficacy of repurposing antiviral drugs. J Biomol Struct Dyn. 2020::1–11.
    [Google الباحث العلمي]
  36. Gupta MK, Vemula S, Donde R, Gouda G, Behera L, Vadde R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J Biomol Struct Dyn. 2020:1–11.
    [Google الباحث العلمي]
  37. Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology. 2016; 123:(6):1386–94.
    [Google الباحث العلمي]
  38. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al.. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020; 6:(1):1–4.
    [Google الباحث العلمي]
  39. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al.. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infect Dis. 2020.
    [Google الباحث العلمي]
  40. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al.. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020; 10:(5):766–88.
    [Google الباحث العلمي]
  41. Harismah K, Mirzaei M. Favipiravir: Structural Analysis and Activity against COVID-19. Adv J Chem B. 2020; 2:(2):55–60.
    [Google الباحث العلمي]
  42. Wu R, Wang L, Kuo H-CD,Shannar A,Peter R,Chou PJ, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep. 2020; 6:(3):56–70.
    [Google الباحث العلمي]
  43. Narkhede RR, Cheke RS, Ambhore JP, SHINDE DS. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. Eurasian J Med Oncol 4:, 185–195.
    [Google الباحث العلمي]
  44. Al-Masoudi NAE, Rita S, Saeed, Bahjat. Molecular Docking Studies of some Antiviral and Antimalarial Drugs Via Bindings to 3CL-Protease and Polymerase Enzymes of the Novel Coronavirus (SARS-CoV-2). Biointerface Research in Applied Chemistry 2020; 10:(5):6444–59.
    [Google الباحث العلمي]
  45. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B. 2017; 93:(7):449–63.
    [Google الباحث العلمي]
  46. Daoud S AS, Dahabiyeh LA. Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies. Acta Pharmaceutica Sinica B. 2021; 1:(71):163–74.
    [Google الباحث العلمي]
  47. Pavel S BC, Alcaraz I, de la Tribonnière X, Baclet V, Ajana F, Mouton Y, et al. Severe liver toxicity in postexposure prophylaxis for HIV infection with a zidovudine, lamivudine and fosamprenavir/ritonavir regimen. AIDS. 2007; 21::268–9.
    [Google الباحث العلمي]
  48. Sato H, Goto W, Yamamura J-i, Kurokawa M, Kageyama S, Takahara T, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antiviral Res. 1996; 30:(2–3):171–7.
    [Google الباحث العلمي]
  49. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al.. Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS − Coronavirus. J Med Chem. 2005; 48:(4):1256–9.
    [Google الباحث العلمي]
  50. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003; 361:(9374):2045–6.
    [Google الباحث العلمي]
  51. Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020; 214::107618–.
    [Google الباحث العلمي]
  52. Agarwal OP. The anti-inflammatory action of nepitrin, a flavonoid. Agents and Actions. 1982; 12:(3):298–302.
    [Google الباحث العلمي]
  53. Surucˇic′ R, Tubic′ B, Stojiljkovic′ MP,Djuric DM, Travar M, Grabež M, et al. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Mol Cell Biochem. 2020.
    [Google الباحث العلمي]
  54. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Alternative Med. 2017; 17:(1):47.
    [Google الباحث العلمي]
  55. Allam L, Ghrifi F, Mohammed H, El Hafidi N,El Jaoudi R, El Harti J, et al. Targeting the GRP78-Dependant SARS-CoV-2 Cell Entry by Peptides and Small Molecules. Bioinform Biol Insights. 2020;14:1177932220965505.
    [Google الباحث العلمي]
  56. Maiti S, Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Dev Res. 2020:10.1002/ddr.21730.
    [Google الباحث العلمي]
  57. Touret F, Gilles M, Barral K, Nougairède A, van Helden J,Decroly E, et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Scientific Reports. 2020; 10:(1):13093.
    [Google الباحث العلمي]
  58. Hoenen T, Groseth A, Feldmann H. Therapeutic strategies to target the Ebola virus life cycle. NatRevi Microbiol. 2019; 17:(10):593–606.
    [Google الباحث العلمي]
  59. Sun W, He S, Martínez-Romero C, Kouznetsova J, Tawa G, Xu M, et al. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res. 2017; 137::165–72.
    [Google الباحث العلمي]
  60. Zheng W, Sun W, Simeonov A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol. 2018; 175:(2):181–91.
    [Google الباحث العلمي]
/content/journals/10.5339/qmj.2021.12
Loading
/content/journals/10.5339/qmj.2021.12
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Research Article
الموضوعات الرئيسية Antiviral drugsComputational dockingMolecular dockingSARS-CoV-2Spike protein and Virtual screening

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error