1887
3 - Second Mustansiriyah International Dental Conference (MIDC 2023)
  • ISSN: 1999-7086
  • E-ISSN: 1999-7094

ملخص

Nanotechnology’s dental applications and application time are investigated. Selective dentin caries removal improves pulp tissue without surgery. Modern caries therapy cures the disease, saves pulp, and remineralizes teeth. Chitosan nanoparticles administer Amoxicillin intracellularly to treat bacterial infections. Chitosan nanoparticles are produced by tri-polyphosphate ionic gelation. Chitosan nanoparticle size and sodium tri poly phosphate (TPP) concentrations were examined to maximize chitosan nanoparticle size. The pH and ultrasonication time were also constant. SEM and FT-IR describe chitosan nanoparticles. Chitosan nanoparticles and their loaded antibiotics kill and inhibit Cariogenic gram (+) bacteria because of their nanoparticle morphologies. Antibacterial activity improved with antibiotic loading.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/jemtac.2023.midc.10
٢٠٢٣-٠٧-١٩
٢٠٢٤-٠٧-١٨
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2023/3/jemtac.2023.midc.10.html?itemId=/content/journals/10.5339/jemtac.2023.midc.10&mimeType=html&fmt=ahah

References

  1. R.M. Benjamin, Oral health: the silent epidemic, Public. Health. Rep. 125: (2010) 158–159, https://doi.org/10.1177/003335491012500202.
    [Google الباحث العلمي]
  2. N. Philip, B. Suneja, L. Walsh, Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome, Br. Dent. J. 224: (2018) 219–225, https://doi.org/10.1038/sj.bdj.2018.81.
    [Google الباحث العلمي]
  3. T.H. Lin, C.H. Lin, T.M. Pan, The implication of probiotics in the prevention of dental caries, Appl. Microbiol. Biotechnol. 102: (2018) 577–586, https://doi.org/10.1007/s00253-017-8664-z.
    [Google الباحث العلمي]
  4. F. Schwendicke, Contemporary concepts in carious tissue removal: a review, J. Esthet. Restor. Dent. 29: (2017) 403–408, https://doi.org/10.1111/jerd.12338.
    [Google الباحث العلمي]
  5. Conrads, G., de Soet J J, Song L, Henne K, Sztajer H, Wanger-Döbler I and Zeng A., (2014). Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. Journal of Oral Microbiology, 6:, 26189
    [Google الباحث العلمي]
  6. Wua, H., Fana, M., Zhoub, X., Mob, A., Biana, Z., Zhanga, Q. and Chena, Z. (2003). Detection of Streptococcus mutans and Streptococcus sobrinus on the Permanent First Molars of the Mosuo People in China. Caries Res, 37:,374–380
    [Google الباحث العلمي]
  7. Okada, M., Soda, Y., Hayashi, F., Doi, T., Suzuki, J. and Miura, K. (2005). Longitudinal study of dental caries incidence associated with Streptococcus, 54:(7),661-65.
    [Google الباحث العلمي]
  8. Hata, S., Hata, H., Miyasawa-Hori, H., Kudo, A. and Mayanagi, H. (2006). Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR. Lett Appl Microbiol. 42:(2),127-31
    [Google الباحث العلمي]
  9. Gibbons, R.J. Cohen, I. and Hay, D.I. (1986). Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors Infect Immun, 52:, 555-561
    [Google الباحث العلمي]
  10. De Soet, J.J, Toors, F.A. and De Graaff, J. (1989). Acidogenesis by oral streptococci at different pH values Caries Res, 23:, 14-17.
    [Google الباحث العلمي]
  11. Rupf, S., Merte, K., Eschrich, K. and Kneist, S. (2006). Streptococcus sobrinus in children and its influence on caries activity Eur Arch Paediatr Dent, 7:, 17-22.
    [Google الباحث العلمي]
  12. Lindquist, B. and Emilson, C.G. (1991). Dental location of Streptococcus mutans and Streptococcus sobrinus in humans harboring both species Caries Res, 25:, 146-152.
    [Google الباحث العلمي]
  13. Nishimura, J., Saito, T., Yoneyama, H., Okumura, L.B. and Isogai, E. (2012). Biofilm Formation by Streptococcus mutans and Related Bacteria. Advances in Microbiology, 2:, 208-215.
    [Google الباحث العلمي]
  14. Jayakumar, R., Nwe, N., Tokura, S. and Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 40:, 175–181 (2007).
    [Google الباحث العلمي]
  15. Yang, T.C., Chou, C.C. and Li, C.F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int. J. Food Microbiol. 97:, 237–245 (2005).
    [Google الباحث العلمي]
  16. Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H. and Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater Sci. 55:, 675–709(2010).
    [Google الباحث العلمي]
  17. Li, Z., Zhuang, X.P., Liu, X.F., Guan, Y.L. and De Yao, K. Study on antibacterial O- carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer 43:, 1541–1547 (2002).
    [Google الباحث العلمي]
  18. L.Y. Ing, N.M. Zin, A. Sarwar, H. Katas, Antifungal activity of chitosan nanoparticles and correlation with their physical properties, Int. J. Biomater.2012 (2012) 632698, https://doi.org/10.1155/2012/632698.
    [Google الباحث العلمي]
  19. E. Darabpour, N. Kashef, S. Mashayekhan, Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study, Photodiagnosis Photodyn. Ther. 14: (2016).
    [Google الباحث العلمي]
  20. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 2012; 90::21–7
    [Google الباحث العلمي]
  21. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosanTPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005; 44:(2-3):65–73.
    [Google الباحث العلمي]
  22. Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci. 2006; 95:(11):2393–405.
    [Google الباحث العلمي]
  23. Chakraborty SP, Sahu SK, Pramanik P, Roy S. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int J Pharm 2012; 436::659–76.
    [Google الباحث العلمي]
  24. Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013; 110::313–20.
    [Google الباحث العلمي]
  25. Sano H, Shibasaki K-I, Matsukubo T and Takaesu Y. Effect of molecular mass and degree of deacetylation of chitosan on adsorption of Streptococcus sobrinus 6715 to saliva treated hydroxyapatite. Bull Tokyo Dent Coll 2002; 43:: 75-82. http://ijm.tums.ac.ir27.
    [Google الباحث العلمي]
  26. Sano H, Shibasaki K-I, Matsukubo T and Takaesu Y. Effect of chitosan rinsing on reduction of dental plaque formation. Bull Tokyo Dent Coll 2003; 44::9-16.
    [Google الباحث العلمي]
  27. Imbuluzqueta E, Gamazo C, Lana H, Campanero MÁ, Salas D, Gil AG, et al. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob Agents Chemother 2013; 57::3326–33.
    [Google الباحث العلمي]
  28. Sarwar A, Katas H, Zin NM. Antibacterial effects of hitosan–tripolyphos- phate nanoparticles: impact of particle size molecular weight. J Nanopart Res 2014; 16::2517–29.
    [Google الباحث العلمي]
  29. Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc 2011; 133::4132–9.
    [Google الباحث العلمي]
  30. Qian Y, Wei L, Xiao-Jun G, Xiao-Qiang G, Jun Y, Qin S,, et al. Preparation, characterization, and cytotoxicity of various chitosan nanoparticles. J Nanomater 2013:1838–71.
    [Google الباحث العلمي]
  31. Liang J, Li F, Fang Y, Yang W, An X, Zhao L, et al. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells. Mater Sci Eng C Mater Biol Appl 2014; 36::71–3.
    [Google الباحث العلمي]
  32. Kumar, G. V., Su, C. H. & Velusamy, P. (2016). Preparation and characterization of kanamycin-chitosan nanoparticles to improve the efficacy of antibacterial activity against nosocomial pathogens. Journal of the Taiwan Institute of Chemical Engineers, 65:, 574–583.
    [Google الباحث العلمي]
  33. Fathallh AA, Mahmood MA. The estimation of the viable count of mutans streptococcus in waterpipe smokers and cigarette smokers. J Bagh Coll Dent [Internet]. 2021 Sep. 15 [cited 2023 Apr. 29]; 33:(3):23-9.
    [Google الباحث العلمي]
  34. Ibrahim SW, Al Nakkash WA. Mechanical evaluation of nano hydroxyapatite, chitosan and collagen composite coating compared with nano hydroxyapatite coating on commercially pure titanium dental implant. J Bagh Coll Dent [Internet]. 2017 Jun. 15 [cited 2023 Apr. 29]; 29:(2):42-8.
    [Google الباحث العلمي]
  35. Shallal LF, Ahmed MA. Experimental In vitro Study to Assess the Antibacterial Activity of Thymus vulgaris Oil on Streptococ-cus Sanguinis. J Bagh Coll Dent [Internet]. 2022 Dec. 15 [cited 2023 Apr. 29]; 34:(4):17-2.
    [Google الباحث العلمي]
  36. Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, “Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin,” Polymers, vol. 14:, no. 15, p. 3139, 2022.
    [Google الباحث العلمي]
/content/journals/10.5339/jemtac.2023.midc.10
Loading
/content/journals/10.5339/jemtac.2023.midc.10
Loading

جارٍ تحميل البيانات والوسائط...

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error