1887
3 - Second Mustansiriyah International Dental Conference (MIDC 2023)
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Nanotechnology’s dental applications and application time are investigated. Selective dentin caries removal improves pulp tissue without surgery. Modern caries therapy cures the disease, saves pulp, and remineralizes teeth. Chitosan nanoparticles administer Amoxicillin intracellularly to treat bacterial infections. Chitosan nanoparticles are produced by tri-polyphosphate ionic gelation. Chitosan nanoparticle size and sodium tri poly phosphate (TPP) concentrations were examined to maximize chitosan nanoparticle size. The pH and ultrasonication time were also constant. SEM and FT-IR describe chitosan nanoparticles. Chitosan nanoparticles and their loaded antibiotics kill and inhibit Cariogenic gram (+) bacteria because of their nanoparticle morphologies. Antibacterial activity improved with antibiotic loading.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2023.midc.10
2023-07-19
2025-01-03
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2023/3/jemtac.2023.midc.10.html?itemId=/content/journals/10.5339/jemtac.2023.midc.10&mimeType=html&fmt=ahah

References

  1. R.M. Benjamin, Oral health: the silent epidemic, Public. Health. Rep. 125: (2010) 158–159, https://doi.org/10.1177/003335491012500202.
    [Google Scholar]
  2. N. Philip, B. Suneja, L. Walsh, Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome, Br. Dent. J. 224: (2018) 219–225, https://doi.org/10.1038/sj.bdj.2018.81.
    [Google Scholar]
  3. T.H. Lin, C.H. Lin, T.M. Pan, The implication of probiotics in the prevention of dental caries, Appl. Microbiol. Biotechnol. 102: (2018) 577–586, https://doi.org/10.1007/s00253-017-8664-z.
    [Google Scholar]
  4. F. Schwendicke, Contemporary concepts in carious tissue removal: a review, J. Esthet. Restor. Dent. 29: (2017) 403–408, https://doi.org/10.1111/jerd.12338.
    [Google Scholar]
  5. Conrads, G., de Soet J J, Song L, Henne K, Sztajer H, Wanger-Döbler I and Zeng A., (2014). Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. Journal of Oral Microbiology, 6:, 26189
    [Google Scholar]
  6. Wua, H., Fana, M., Zhoub, X., Mob, A., Biana, Z., Zhanga, Q. and Chena, Z. (2003). Detection of Streptococcus mutans and Streptococcus sobrinus on the Permanent First Molars of the Mosuo People in China. Caries Res, 37:,374–380
    [Google Scholar]
  7. Okada, M., Soda, Y., Hayashi, F., Doi, T., Suzuki, J. and Miura, K. (2005). Longitudinal study of dental caries incidence associated with Streptococcus, 54:(7),661-65.
    [Google Scholar]
  8. Hata, S., Hata, H., Miyasawa-Hori, H., Kudo, A. and Mayanagi, H. (2006). Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR. Lett Appl Microbiol. 42:(2),127-31
    [Google Scholar]
  9. Gibbons, R.J. Cohen, I. and Hay, D.I. (1986). Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors Infect Immun, 52:, 555-561
    [Google Scholar]
  10. De Soet, J.J, Toors, F.A. and De Graaff, J. (1989). Acidogenesis by oral streptococci at different pH values Caries Res, 23:, 14-17.
    [Google Scholar]
  11. Rupf, S., Merte, K., Eschrich, K. and Kneist, S. (2006). Streptococcus sobrinus in children and its influence on caries activity Eur Arch Paediatr Dent, 7:, 17-22.
    [Google Scholar]
  12. Lindquist, B. and Emilson, C.G. (1991). Dental location of Streptococcus mutans and Streptococcus sobrinus in humans harboring both species Caries Res, 25:, 146-152.
    [Google Scholar]
  13. Nishimura, J., Saito, T., Yoneyama, H., Okumura, L.B. and Isogai, E. (2012). Biofilm Formation by Streptococcus mutans and Related Bacteria. Advances in Microbiology, 2:, 208-215.
    [Google Scholar]
  14. Jayakumar, R., Nwe, N., Tokura, S. and Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 40:, 175–181 (2007).
    [Google Scholar]
  15. Yang, T.C., Chou, C.C. and Li, C.F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int. J. Food Microbiol. 97:, 237–245 (2005).
    [Google Scholar]
  16. Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H. and Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater Sci. 55:, 675–709(2010).
    [Google Scholar]
  17. Li, Z., Zhuang, X.P., Liu, X.F., Guan, Y.L. and De Yao, K. Study on antibacterial O- carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer 43:, 1541–1547 (2002).
    [Google Scholar]
  18. L.Y. Ing, N.M. Zin, A. Sarwar, H. Katas, Antifungal activity of chitosan nanoparticles and correlation with their physical properties, Int. J. Biomater.2012 (2012) 632698, https://doi.org/10.1155/2012/632698.
    [Google Scholar]
  19. E. Darabpour, N. Kashef, S. Mashayekhan, Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study, Photodiagnosis Photodyn. Ther. 14: (2016).
    [Google Scholar]
  20. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 2012; 90::21–7
    [Google Scholar]
  21. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosanTPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005; 44:(2-3):65–73.
    [Google Scholar]
  22. Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci. 2006; 95:(11):2393–405.
    [Google Scholar]
  23. Chakraborty SP, Sahu SK, Pramanik P, Roy S. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int J Pharm 2012; 436::659–76.
    [Google Scholar]
  24. Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 2013; 110::313–20.
    [Google Scholar]
  25. Sano H, Shibasaki K-I, Matsukubo T and Takaesu Y. Effect of molecular mass and degree of deacetylation of chitosan on adsorption of Streptococcus sobrinus 6715 to saliva treated hydroxyapatite. Bull Tokyo Dent Coll 2002; 43:: 75-82. http://ijm.tums.ac.ir27.
    [Google Scholar]
  26. Sano H, Shibasaki K-I, Matsukubo T and Takaesu Y. Effect of chitosan rinsing on reduction of dental plaque formation. Bull Tokyo Dent Coll 2003; 44::9-16.
    [Google Scholar]
  27. Imbuluzqueta E, Gamazo C, Lana H, Campanero MÁ, Salas D, Gil AG, et al. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob Agents Chemother 2013; 57::3326–33.
    [Google Scholar]
  28. Sarwar A, Katas H, Zin NM. Antibacterial effects of hitosan–tripolyphos- phate nanoparticles: impact of particle size molecular weight. J Nanopart Res 2014; 16::2517–29.
    [Google Scholar]
  29. Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc 2011; 133::4132–9.
    [Google Scholar]
  30. Qian Y, Wei L, Xiao-Jun G, Xiao-Qiang G, Jun Y, Qin S,, et al. Preparation, characterization, and cytotoxicity of various chitosan nanoparticles. J Nanomater 2013:1838–71.
    [Google Scholar]
  31. Liang J, Li F, Fang Y, Yang W, An X, Zhao L, et al. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells. Mater Sci Eng C Mater Biol Appl 2014; 36::71–3.
    [Google Scholar]
  32. Kumar, G. V., Su, C. H. & Velusamy, P. (2016). Preparation and characterization of kanamycin-chitosan nanoparticles to improve the efficacy of antibacterial activity against nosocomial pathogens. Journal of the Taiwan Institute of Chemical Engineers, 65:, 574–583.
    [Google Scholar]
  33. Fathallh AA, Mahmood MA. The estimation of the viable count of mutans streptococcus in waterpipe smokers and cigarette smokers. J Bagh Coll Dent [Internet]. 2021 Sep. 15 [cited 2023 Apr. 29]; 33:(3):23-9.
    [Google Scholar]
  34. Ibrahim SW, Al Nakkash WA. Mechanical evaluation of nano hydroxyapatite, chitosan and collagen composite coating compared with nano hydroxyapatite coating on commercially pure titanium dental implant. J Bagh Coll Dent [Internet]. 2017 Jun. 15 [cited 2023 Apr. 29]; 29:(2):42-8.
    [Google Scholar]
  35. Shallal LF, Ahmed MA. Experimental In vitro Study to Assess the Antibacterial Activity of Thymus vulgaris Oil on Streptococ-cus Sanguinis. J Bagh Coll Dent [Internet]. 2022 Dec. 15 [cited 2023 Apr. 29]; 34:(4):17-2.
    [Google Scholar]
  36. Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, “Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin,” Polymers, vol. 14:, no. 15, p. 3139, 2022.
    [Google Scholar]
/content/journals/10.5339/jemtac.2023.midc.10
Loading
/content/journals/10.5339/jemtac.2023.midc.10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error