1887
Volume 2024, Issue 4
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

ملخص

Purpose: The aim of this study was to investigate the possibility of including miRNA-371 and miRNA-143 in the early detection and diagnosis of the extent of the metabolic syndrome (MetS) in obese patients by measuring the expression of miRNA-143 and miRNA-371 in metabolically and pre-metabolically obese individuals and comparing the results with metabolically healthy obese controls. In addition, the study aimed to assess the correlation between the two types of miRNA and the criteria of MetS.

Methods: The expression levels of miRNA-143 and miRNA-371 were determined using quantitative real-time polymerase chain reaction (PCR) for 135 obese patients who were divided into the following three different categories based on metabolic criteria: 1) metabolic syndrome obese (MetS) group, 2) pre-metabolic syndrome obese (PreMetS) group, and 3) metabolically healthy obese (MHO) group.

Results: The results indicated a significant association of miRNA-143 and miRNA-371 with the MetS group compared with the PreMetS and MHO groups. As a result, the correlation analysis for these miRNAs revealed a large association with the results of the analysis for various factors, especially with regard to fasting glucose and lipid profiles in the MetS group.

Conclusion: There was an association between obesity and MetS. This study was able to establish the role of miRNA-371 and miRNA-143 molecules in metabolically obese individuals. Therefore, by tracking the regulatory pathway of these molecules and expanding the understanding of the process of regulation and interference with the various metabolic pathways, this study could provide a deeper analysis and understanding of the MetS in obesity and the molecular causes leading to it.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/qmj.2024.71
٢٠٢٤-١٢-١٦
٢٠٢٥-٠٣-٠٧
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2024/4/qmj.2024.71.html?itemId=/content/journals/10.5339/qmj.2024.71&mimeType=html&fmt=ahah

References

  1. Lemos GDO, Torrinhas RS, Waitzberg DL. Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome. Nutrients. 2023 Feb 28; 15:(5):1217. doi: 10.3390/nu15051217.
    [Google الباحث العلمي]
  2. Bazmandegan G, Abbasifard M, Nadimi AE, Alinejad H, Kamiab Z. Cardiovascular risk factors in diabetic patients with and without metabolic syndrome: A study based on the Rafsanjan cohort study. Sci Rep. 2023 Jan 11; 13:(1):559. doi: 10.1038/s41598-022-27208-5.
    [Google الباحث العلمي]
  3. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008 Apr; 28:(4):629–636. doi: 10.1161/ATVBAHA.107.151092.
    [Google الباحث العلمي]
  4. Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023 Mar 7; 35:(3):414–428.e3. doi: 10.1016/j.cmet.2023.02.003.
    [Google الباحث العلمي]
  5. Bowo-Ngandji A, Kenmoe S, Ebogo-Belobo JT, Kenfack-Momo R, Takuissu GR, Kengne-Ndé C, et al. Prevalence of the metabolic syndrome in African populations: A systematic review and meta-analysis. PLoS One. 2023 Jul 27; 18:(7):e0289155. doi: 10.1371/journal.pone.0289155.
    [Google الباحث العلمي]
  6. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20; 120:(16):1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    [Google الباحث العلمي]
  7. Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956 Jan–Feb; 4:(1):20–34. doi: 10.1093/ajcn/4.1.20.
    [Google الباحث العلمي]
  8. Milewska EM, Szczepanek-Parulska E, Marciniak M, Krygier A, Dobrowolska A, Ruchala M. Selected organ and endocrine complications according to BMI and the metabolic category of obesity: A single endocrine center study. Nutrients. 2022 Mar 20; 14:(6):1307. doi: 10.3390/nu14061307.
    [Google الباحث العلمي]
  9. Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A review of micro RNAs changes in T2DM in animals and humans. J Diabetes. 2023 Aug; 15:(8):649–664. doi: 10.1111/1753-0407.13431.
    [Google الباحث العلمي]
  10. Liu C, Feng H, Zhang L, Guo Y, Ma J, Yang L. MicroRNA1433p levels are reduced in the peripheral blood of patients with gestational diabetes mellitus and influences pancreatic βcell function and viability. Exp Ther Med. 2022 Dec 30; 25:(2):81. doi: 10.3892/etm.2022.11780.
    [Google الباحث العلمي]
  11. Zong Y, Wang X, Cui B, Xiong X, Wu A, Lin C et al.. Decoding the regulatory roles of non-coding RNAs in cellular metabolism and disease. Mol Ther. 2023 Jun 7; 31:(6):1562–1576. doi: 10.1016/j.ymthe.2023.04.012.
    [Google الباحث العلمي]
  12. Caliskan A, Crouch SA, Dangwal S. Epigenetic miRNA mediated regulation of RAS in cardiovascular diseases. In The Renin Angiotensin System in Cardiovascular Disease (pp. 81–103). Cham: Springer International Publishing; 2023.
  13. Marketou M, Kontaraki J, Kalogerakos P, Plevritaki A, Chlouverakis G, Kassotakis S, et al. Differences in microRNA expression in pericoronary adipose tissue in coronary artery disease compared to severe valve dysfunction. Angiology. 2023 Jan; 74:(1):22–30. doi: 10.1177/00033197221121617.
    [Google الباحث العلمي]
  14. Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, et al. The novel importance of miR-143 in obesity regulation. Int J Obes. 2023 Feb; 47:(2):100–108. doi: 10.1038/s41366-022-01245-6.
    [Google الباحث العلمي]
  15. Carter PJ, Taylor BJ, Williams SM, Taylor RW. Longitudinal analysis of sleep in relation to BMI and body fat in children: The FLAME study. BMJ. 2011 May 26;342:d2712. doi: 10.1136/bmj.d2712.
    [Google الباحث العلمي]
  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCt method. Methods. 2001 Dec; 25:(4):402–408. doi: 10.1006/meth.2001.1262.
    [Google الباحث العلمي]
  17. Zheng B, Xue X, Zhao Y, Chen J, Xu CY, Duan P. The differential expression of microRNA-143,145 in endometriosis. Iran J Reprod Med. 2014 Aug; 12:(8): 555–560.? Available from: https://pubmed.ncbi.nlm.nih.gov/25408705/.
    [Google الباحث العلمي]
  18. Liu RY, Diao CF, Zhang Y, Wu N, Wan HY, Nong XY, et al. miR-371-5p down-regulates pre mRNA processing factor 4 homolog B (PRPF4B) and facilitates the G1/S transition in human hepatocellular carcinoma cells. Cancer Lett. 2013 Jul 28; 335:(2):351–360. doi: 10.1016/j.canlet.2013.02.045.
    [Google الباحث العلمي]
  19. Huang Y, Yan Y, Xv W, Qian G, Li G, Zou H, et al. A new insight into the roles of MiRNAs in metabolic syndrome. Biomed Res Int. 2018 Dec 17; 2018:7372636. doi: 10.1155/2018/7372636.
    [Google الباحث العلمي]
  20. Tzenios N. Obesity as a risk factor for different types of cancer. EPRA Int J Res Dev (IJRD). 2023 Feb; 8:(2):97–100. doi: 10.36713/epra12421.
    [Google الباحث العلمي]
  21. Perone F, Pingitore A, Conte E, Halasz G, Ambrosetti M, Peruzzi M, Cavarretta E. Obesity and cardiovascular risk: Systematic intervention is the key for prevention. Healthcare (Basel). 2023 Mar 21; 11:(6):902. doi: 10.3390/healthcare11060902.
    [Google الباحث العلمي]
  22. ENGIN AB, ENGIN A. Adipogenesis-related microRNAs in obesity. ExRNA. 2022 Jul; 4:. doi: 10.21037/exrna-22-4.
    [Google الباحث العلمي]
  23. Goguet-Rubio P, Klug RL, Sharma DL, Srikanthan K, Puri N, Lakhani VH, et al. Existence of a strong correlation of biomarkers and miRNA in females with metabolic syndrome and obesity in a population of West Virginia. Int J Med Sci. 2017 Apr 19; 14:(6):543–553. doi: 10.7150/ijms.18988.
    [Google الباحث العلمي]
  24. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008 Oct; 18:(10):997–1006. doi: 10.1038/cr.2008.282.
    [Google الباحث العلمي]
  25. Zeng X, Zhang X, Zou Q. Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Brief Bioinform. 2016 Mar; 17:(2):193–203. doi: 10.1093/bib/bbv033.
    [Google الباحث العلمي]
  26. Wang L, Shang C, Pan H, Yang H, Zhu H, Gong F. MicroRNA expression profiles in the subcutaneous adipose tissues of morbidly obese Chinese women. Obes Facts. 2021 Feb 5; 14:(1):1–15. doi: 10.1159/000511772.
    [Google الباحث العلمي]
  27. Goncalves BS, Meadows A, Pereira DG, Puri R, Pillai S. Insight into the inter-organ crosstalk and prognostic role of liver-derived microRNAs in metabolic disease progression. Biomedicines. 2023 May 31; 11:(6):1597. doi: 10.3390/biomedicines11061597.
    [Google الباحث العلمي]
  28. Purnell JQ. Definitions, classification, and epidemiology of obesity. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279167/.
    [Google الباحث العلمي]
  29. Chen W, Chen Y, Hui T. MicroRNA-143 interferes the EGFR-stimulated glucose metabolism to re-sensitize 5-FU resistant colon cancer cells via targeting hexokinase 2. J Chemother. 2023 Oct; 35:(6):539–549. doi: 10.1080/1120009X.2022.2157617.
    [Google الباحث العلمي]
  30. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009 May; 58:(5):1050–1057. doi: 10.2337/db08-1299.
    [Google الباحث العلمي]
  31. Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol. 2023 Aug;93:52–69. doi: 10.1016/j.semcancer.2023.05.001.
    [Google الباحث العلمي]
  32. Thibeault K, Légaré C, Desgagné V, White F, Clément AA, Scott MS, et al. Maternal body mass index is associated with profile variation in circulating microRNAs at first trimester of pregnancy. Biomedicines. 2022 Jul 18; 10:(7):1726. doi: 10.3390/biomedicines10071726.
    [Google الباحث العلمي]
  33. van Wijk JP, Halkes CJ, Erkelens DW, Castro Cabeza M. Fasting and daylong triglycerides in obesity with and without type 2 diabetes. Metabolism. 2003 Aug; 52:(8):1043–1049. doi: 10.1016/s0026-0495(03)00106-9.
    [Google الباحث العلمي]
  34. Björnson E, Adiels M, Taskinen MR, Borén J. Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. 2017 Feb; 28:(1):11–18. doi: 10.1097/MOL.0000000000000375.
    [Google الباحث العلمي]
  35. Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol. 2011 Sep; 226:(9):2226–2234. doi: 10.1002/jcp.22557.
    [Google الباحث العلمي]
  36. Khamseh ME, Malek M, Abbasi R, Taheri H, Lahouti M, Alaei-Shahmiri F. Triglyceride glucose index and related parameters (triglyceride glucose-body mass index and triglyceride glucose-waist circumference) identify nonalcoholic fatty liver and liver fibrosis in individuals with overweight/obesity. Metab Syndr Relat Disord. 2021 Apr; 19:(3):167–173. doi: 10.1089/met.2020.0109.
    [Google الباحث العلمي]
/content/journals/10.5339/qmj.2024.71
Loading
/content/journals/10.5339/qmj.2024.71
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Research Article
الموضوعات الرئيسية metabolic syndromemetabolically healthy obeseMiRNAs and pre-metabolic syndrome

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error