- Home
- Conference Proceedings
- Qatar Foundation Annual Research Conference Proceedings
- Conference Proceeding
Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1
- Conference date: 22-23 Mar 2016
- Location: Qatar National Convention Center (QNCC), Doha, Qatar
- Volume number: 2016
- Published: 21 March 2016
1 - 20 of 656 results
-
-
Synthesis of Novel Polymeric Films for Energy and Environmental Applications
Authors: Gordon Mckay and Junaid SaleemNovel multifunctional polymer films using polyethylene for environmental and energy applications were synthesized. Super oil sorbent polymer (oil-SAP) for efficient oil spill remedy was first produced and with slight modification used as a composite electrolyte membrane for fuel cell applications. The usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil sorption capacities. Attempts at trying to increase the surface to thickness ratio for improving uptake capacity makes them vulnerable to breakage and impractical to be used in most oil spill applications. Besides the saturation contact time of these sorbents with oil is too long to be used in applications where the first few hours are crucial as the critical stage of spreading occurs within the first hour. To address this issue, super oil sorbent polymer film consisting of porous ultra-high molecular weight polyethylene was prepared. The presented sorbent exhibits extremely high oil uptake with super-fast oil uptake speed, high retention capacity along with a mechanically strong structure. The combination of these factors as well as the cost effectiveness of the material used makes these sorbent films viable candidates for widespread production and utilization A novel composite electrolyte membrane, consisting of polyethylene substrate and Nafion ionomer, was also manufactured. Nafion is by far the most widely used electrolyte in the fuel cell industry because of its excellent proton conductivity. Yet, it suffers from several drawbacks such as high fuel crossover and low mechanical strength, which lower the fuel cell performance and disturb the structural integrity. In order to deal with these problems, we have prepared an NPE (Nafion-polyethylene) composite that is composed of a porous substrate and a filling electrolyte. Nafion was used as a filling electrolyte and was impregnated into the pores of porous substrate made up of polyethylene. The polymer backbone serves as a structural support and blocks the crossover while the impregnated Nafion molecules provide the proton conducting path. Systematic characterization of NPE is also presented.
-
-
-
New Conjugated Polymer Materials for Solar Energy and Organic Electronics
Authors: Mohammed Al-Hashimi, Hugo Bronstein, Lei Fang, Hassan Bazzi, Martin Heeney and Tobin MarksPlastic electronics has made great commercial and scientific progress over the past decade, predominantly driven by the potential of applications such as organic field effect transistors (OFETs) for flexible backplanes and e-paper, organic light emitting diodes (OLEDs) for large area lighting and displays and organic solar cells (OPV) for large area energy generation.1,2 Much of this work has been motivated by the fact that organic semiconductors can combine the superb mechanical and processing characteristics of plastics with a variety of printing techniques, enabling large-area, low-cost manufacturing. There has been an intensive worldwide research effort on the development of stable, conjugated organic semiconducting polymers as potential replacements for conventional silicon, the benchmark large area amorphous semiconductor. ID TechEx, the UK-based market research company, “estimates that over the last two decades global investments into plastic electronics technologies exceed US $10 billion, and predict that this will grow to almost US $25 billion by 2020”.3 The ecological and commercial motivation to implement the use of plastic electronics is compelling. Recently, such efforts have facilitated the development of thin film transistors for backplane applications such as e-paper. The ability to operate in ambient atmosphere without costly and rigorous encapsulation barriers to avoid water and/or oxygen is an important step towards commercialization. Research for cleaner alternatives of energy generation and advanced energy permitting devices has journeyed down an interesting path. The exploration of conjugated organic materials within the context of energy has led to the development of devices with great potential for utilization and exploitation within the near future, where perhaps the emergence of hybrid materials or the utilization of nano-architectonics will be of paramount importance to aid in the development of state of the art nanotechnology and its utilization within energy related themes. Meanwhile, further reducing of the cost is expected in the next decade as a result of designing next generation of energy devices (e.g. supercapacitors, solar cells, Li-ion batteries, fuel cells). Organic PV active layers (especially polymer based materials) have the latent potential of solution based processing of the active layers, offering the attraction of low-cost, continuous roll-to-roll or printing processing of large area devices upon flexible substrates. These deposition techniques of the active layers may allow devices to meet the $15/m2 target; for comparison paint costs about $1/m2. Furthermore, organic active layers offer infinite design space by virtue of the polymer architectures, providing potential for layers design and tunability to suit specific energy supply criteria.4 The development of more efficient energy-producing devices and cleaner energy generation alternatives continue to advance. The investigation of polymeric materials within the context of solar energy has thus far yielded devices with great potential. Through systematic chemical modification, the performance of OPV cells has advanced impressively over the last three years, with power conversion efficiency (PCE) now routinely surpassing 8%, and attracting industrial interest in commercializing this technology.5 The synthesis of well-defined conjugated molecules/polymers is a considerable synthetic challenge that many excellent research groups have addressed over the last decade or so. A particularly promising class of potential donor/acceptor materials for use in BHJ solar cells and organic electronics are the aromatic donor-acceptor amido pigments diketopyrrolopyrrole (DPP) and isoindigo and the electron deficient bis-Thiazole (Figure 1). Here, an electron-rich aromatic segment is positioned adjacent to a highly electron-deficient amide link typically known as a push-pull chromophore.6 When incorporated into small molecules or polymers, this structure affords very narrow band-gaps capable of harvesting a large percentage of the solar flux. Both DPP and isoindigo units have recently been used to construct some of the most efficient organic solar cells to date, and the present work capitalizes on these advances, and goes beyond. Figure 1- Chemical structures of DPP, Isoindigo and bis-thiazole. Here we will present our synthetic efforts on developing the novel polymeric materials containing the three structures shown in Figure 1, particular emphasis on a suit of carefully selected sidechains, which has provide access to a wide range of monomers with tuneable solubility (with either short or long, branched or linear alkyl chains). Moreover, the initial synthetic targets will specifically be the introduction of branched ocytyl-decyl chains as well as linear hexadecyl alkyl chains since they have both been used in other high efficiency conjugated polymers-the latter are known to enhance interchain interdigitation and close π-π stacking.
References: (1) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; Mcculloch, I.; Ha, C. S.; Ree, M. Nat Mater 2006, 5, 197.
(2) Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat Photonics 2009, 3, 649.
(3) http://ukplaticelectronics.com, C. G.-U. P. E.
(4) Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J., J. Mater. Chem. 2009, 19 (30), 5442–5451.
(5) Guo, X.; Zhou, N.; Lou, S. J.; Smith, J.; Tice, D. B.; Hennek, J. W.; Ortiz, R. P.; Navarrete, J. T. L.; Li, S.; Strzalka, J.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J., Nat. Photon 2013, 7 (10), 825–833.
(6) Li, Y.; Sonar, P.; Murphy, L.; Hong, W., Energy Environ. Sci. 2013, 6 (6), 1684–1710.
(7) Cates, N. C.; Gysel, R.; Beiley, Z.; Miller, C. E.; Toney, M. F.; Heeney, M.; McCulloch, I.; McGehee, M. D., Nano Lett. 2009, 9 (12), 4153–4157.
-
-
-
Co2 Capture and Transformation to Ethanol using Dehydrogenase Cascade at Cathode in Bioelectrochemical System (BES): Role of Carbonic Anhydrase
Authors: Deepak Pant, Sandipam Srikanth and Karolien VanbroekhovenIndustrial revolution, a consequence of the rapid economic growth, has contributed to ever increasing demand for energy and has resulted in about 40% rise in the atmospheric concentration of carbon dioxide, from 280 ppm in 1750 to 400 ppm in 2015. Abundant use of fossil fuels has become a cause of concern due to their adverse effects on the environment, particularly related to the emission of carbon dioxide (CO2), a major contributor of GHG. In this context, CO2 capture and is storage or transformation gained significance in the recent research scenario. Various matured CO2 capture technologies such as amine based capture, needs high energy input, especially in desorption process and are also not sustainable in nature. Alternatively, carbonic anhydrase (CA) proved to be more efficient in capturing CO2 at faster rate and also needs less energy input for desorption process. However, utilization of the captured CO2 is more important rather than its capture, to close the carbon cycle and recycle it. In this direction, bioelectrochemical system (BES) is presenting an exciting opportunity with a possibility of simultaneous CO2 capture and biotransformation to value-added products in a sustainable way. Both microbes and enzymes were studied as catalyst in BES, though the application of enzymes is less foreseen. Present study demonstrates the biotransformation of CO2 to ethanol using a cascade of dehydrogenases [formate dehydrogenase (FateDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (AlcDH)] together on the electrode of BES. Further to that, carbonic anhydrase (CA) was also included in the cascade and found that the product yield increased by 15% contributing to ethanol production rate of ∼0.6 kg/m3/h along with current density of ∼2 A/m2. When the FaldDH was excluded from the cascade also, there is no reduction in productivity of ethanol. It was surprising to get ethanol instead of methanol but based on literature, it is also possible for the production of ethanol directly from formic acid, which is economically more viable.
-
-
-
Impact of Integrating Large-Capacity Hybrid Renewable Energy Systems into Qatar's Power Grid
Authors: Dallia Ali and Shady KhalilThe implementation of large-scale renewable energy systems (such as solar and wind) in the GCC is widely growing nowadays, particularly in remote areas generation applications where the grid extension is costly. The integration of renewable energy systems into the existing power grids, especially the hybrid ones like hybrid solar wind systems, not only provide a clean environmentally friendly supply of electricity but also provide a more reliable supply of electricity through the utilization of different energy sources. However, the operating characteristics of such renewable energy systems are strongly influenced by the weather patterns, i.e. intermittent generation, and will therefore impact the operation of the power grid into which they are integrated. Certain amounts of renewable distributed generation can be integrated into the existing grid without affecting its operation; however, the massive introduction of large-scale renewable energy systems into the grid will result into an increased level of risk of overload and over voltage, unacceptable levels of power quality and reliability, together with the possibility of incorrect operation of the protection system. Therefore, significant investments will be needed to enable the existing power grids to accommodate such a large scale of renewable energy systems into it while avoiding such impacts.In this paper, a comprehensive study of the impact of integrating large-scale hybrid renewable energy systems into Qatar's electrical power grid is carried out. The study includes investigating the grid power flow, power quality, efficiency, transient stability, and reliability under both normal and contingency operating conditions. The study aims to give solutions for allowing the increase in large scale hybrid renewable energy systems penetration into Qatar's grid while reducing their influence and maintaining the grid reliability and stability during all operating conditions. The study is performed based on Qatar's grid real-time operating conditions, and takes into account Qatar's climate profile (e.g. Qatar average annual wind speed and solar irradiation) in order to simulate the intermittent output of the integrated hybrid renewable energy system. Moreover, an economic study and an environmental impact study are carried out to evaluate the large-scale integration of hybrid renewable energy systems into Qatar's grid from different aspects. In summary, the carried out studies will show the impact of implementing large-scale hybrid renewable energy systems on the performance of Qatar's power grid, together with its environmental and economic benefits. The real-time implementation will suggest how to introduce the large scale hybrid renewable energy systems gradually into Qatar's grid, and will propose the best scenario for operating both the existing conventional stations and the integrated hybrid systems while balancing their electricity generation with the demand. The real-time implementation utilizes a new smart control and management mechanism that is proposed to allow such a balance between the generation and demand on introducing large-scale hybrid renewable energy systems into Qatar's existing power grid. The outcome of this study will help Qatar in assessing and evaluating the operational, environmental and economic aspects of large scale hybrid renewable energy systems penetration into Qatar's power grid, and will demonstrate the challenges that will face Qatar when integrating such a large capacity into its grid.
-
-
-
High Resolution Logs of Organic Carbon by LIPS (Laser Induced Pyrolysis System)
Authors: Fatima Mahdaoui and Frank HaeselerCharacterizing the content and understanding the distribution of organic carbon in sediments is a key element for the exploration and the production of new or revisited petroleum prospects.
Developed by Total, the LIPS has a set of unique features:
∘ it is poorly destructive: indeed, the laser impact affects only 1 mm3 of material,
∘ it generates very large datasets / big data (typically 10,000 data points and more for 100 meters of core). Statistical treatment on such data sets provide more significant and more representative description than discrete and low resolution sampling. This opens completely new perspectives to understand organic matter deposition and distribution. Thus, descriptive and inductive statistics may be used to infer laws and to detect:
- trends, behaviors and dependencies,
- relationships with lithology, rock type, Milankowitch cycles …
∘ it provides high resolution data allowing more accurate location and a better quantitative evaluation of the organic carbon in cores.
The LIPS equipment currently installed in Doha (Fig. 1) addresses typical issues in the Middle East.
Figure 1: LIPS equipment installed in TRC-Q, Doha, Qatar
The high resolution data acquisition allows exhaustive location of permeability barriers in carbonate reservoirs also known by petroleum engineers as tar mats. It also contributes to the identification of all the sweet spots in source rocks layers for non conventional plays in exploration and development. As such it is a tool contributing significantly to the economical exploitation of shales gases and shale oils.
“Milanković-type“ climate cycles are due to variation of Earth rotation. They are known to control fluctuation of sedimentary organic carbon. The data presented in Fig. 2 indicate that the resolution of LIPS data is high enough to highlight the climate change induced variations of organic carbon in the Jordan oil shale play. It also shows the added value of the LIPS in comparison with the conventional Rock Eval data.
Figure 2: High resolution LIPS data (1/cm) highlights the climate induced variations of organic carbon in the Jordan oil shale
In light of successful results obtained for GCC issues, new developments involving local staff are expected in Doha with the support of Total's Headquarter. Indeed, specific applications to carbonate reservoirs and resources are underway, for instance:
∘ new methods for performing quantitative analysis of bitumen forming tarmat in carbonate reservoirs. Middle East is the ideal trial field, since all tarmat configurations and formation pathways exist in these countries,
∘ new and simple devices for specific compound detection (e.g. CO2, organo-sulfur compounds...). The goal is to make a distinction between fossil organic carbon, tarmat, heavy oil and oil. Automatic measurement High resolution correlation between TOC and of residual permeability may be performed,
∘ hyphenated techniques from the coupling of the LIPS with on-line spectroscopic detection technologies (e.g. isotope ratios mass spectrometer).
The LIPS is a real breakthrough in terms of both its technological originality and its unique ability to characterize carbon deposits.
-
-
-
Novel Tri Hybrid Desalination Plants
Authors: Abdel-Nasser Mabrouk and Mohamed DarwishHybrid desalination (thermal/membrane) process is a viable solution in Gulf Cooperation countries (GCC). In GCC, large thermal desalination plant, e.g. Multi Stage Flash (MSF) and Multi-Effect-Distillation (MED), exist and will stay in operation through their expected life, (10’s of years) while new large capacity reverse osmosis (RO) plants should be applied to lower the water specific consumed energy and cost. The thermal desalination technology was the prevailing technology in the GCC, where capacity per unit is large (up tom 20 MIGD), low energy cost was assumed, seawater salinity is high, and combining desalting plants with power plants provides low cost steam extracted from turbines to desalting plants at low pressures (e.g. 1–3 bars). However, in recent years, membrane systems, namely seawater reverse osmosis (SWRO), become the prevalent desalting worldwide as a result of much lower specific energy consumption (compared to MSF and MED systems), development in RO membranes properties and energy recovery devices, and low electric load in winter forcing some power plant units to cease operation, and thus unavailability of steam extracted from turbines. In this case, the boiler generated steam is wastefully throttled to the conditions required by desalting units. Realizing the fact that large MSF and MED are existing and operating, while large SWRO have to be implemented, combining the operation of both technologies can be beneficial and a need to have optimum configurations exist in terms of reduced total desalted water cost. The synergy of the present commercial hybrid thermal/membrane desalting plants is limited by using common intakes and outfalls facilities, while are running independently at the same site. Product water of both membrane and thermal plants are usually blended to meet the international standards water quality specifications.
Moreover, the use of forward osmosis (FO) as a pre-treatment to the MSF units was suggested to remove the divalent ions, such as MgSO4 and CaSO4 in order to increase the top brine temperature (TBT) beyond 110°C was suggested. This increases the MSF unit capacity and gain ratio. In this arrangement, the MSF brine (of high concentration) is used as draw solution to the incoming seawater to the FO membrane. The brine is diluted by drawing pure water from seawater feed, and is circulated back to the MSF unit where distillate is recovered. The main advantage of this suggestion is the use of brine as draw solution without the need to external solution and the MSF process is utilized as recovery process. However, the relatively low osmotic pressure of the brines necessitates high required FO membrane area, which is expensive.
In the present work, a new configuration of tri RO-FO-MSF hybrid desalination process is proposed. The aim of the proposed configuration is reduce the specific thermal energy consumption by producing the desalted seawater by both MSF and RO systems. The cooling water leaving the MSF heat rejection sections is used as a feed to RO to improve the RO productivity (i.e. recovery ratio). The RO brine and MSF blow-down mixture is used a draw solution to the FO process, and the diluted solution is directed to the MSF unit. This lead to higher productivity and low chemical consumptions compared to separate systems.
A flexible and powerful tool of Visual Design and Simulation program (VDS) is used to evaluate this novel tri hybrid RO-FO-MSF. Typical desalting plants are simulated to verify and the wide scope and high capability of the developed package. In this work, the scope of the VDS program is extended to develop novel tri hybrid RO-FO-MSF and compare it against MSF-NF, MSF-FO and RO-MSF configurations. In order to compare among different configuration, the reference RO plant (33 MIGD) in UAE and reference MSF (15 MIGD) unit in Qatar are considered as a base of comparison.
For fare comparison between thermal and membrane in terms of energy consumption, the equivalent mechanical energy of thermal energy associated with heating steam supplied to the brine heater of the MSF is calculated using exergy method. This equivalent energy is equal to the power loss in steam power plant due to combined with thermal desalination plant. The equivalent energy varies according the Gain Output ratio (GOR) of the thermal system. The total energy consumption in MSF unit is a summation of the equivalent of the thermal energy and pumping energy.
Comparison between different hybrid configurations will be based on total consumed energy per unit production at different recovery ratio of the system. In the present methodology, a fixed value of input seawater feed flow rate is specified and then total energy consumption is calculated at varying recovery ratio for each hybrid system.
Simulation results showed that the consumed energy of the hybrid FO-MSF is 10 % lower than NF-MSF and 29 % higher in the recovery ratio. The hybrid RO-MSF in series is 20 % higher in the recovery ratio and 60 % lower in consumed energy compared to the traditional MSF. The hybrid RO-MSF consumes the same energy of standalone RO however the recovery ratio is 23 % higher than RO.
The recovery ratio for tri-hybrid RO-FO-MSF configuration is higher 30 % higher, when compare with the traditional MSF and standalone RO. The consumed specific energy in the tri hybrid configuration is 60 % lower than MSF and consume the same energy of the RO process.
The tri hybrid RO-FO-MSF, when compared with other hybrid configurations, has superior lower consumed energy, as well as with standalone MSF and RO processes. The novel
(RO-FO-MSF) configuration provides a solution of the limited recovery ratio of the standalone RO and MSF.
The product blend of the MSF distillate and RO permeate would enable using single pass RO and excluding the second pass which will reduce the capital investment cost. Also the product blend will resolve the borne issue rose up in standalone RO plant since the permeate of the RO is diluted by the MSF distillate.
-
-
-
Monitoring Aquatic Biodiversity in the Gulf using Environmental DNA
Authors: Philip Francis Thomsen, Steffen Sanvig Bach, Eva Sigsgaard and Peter Rask MoellerAquatic ecosystems across the globe are under significant threat, suffering from various forms of anthropogenic disturbances, which is greatly impacting global biodiversity, economy and human health. Reliable monitoring of species is crucial for data-driven management actions in this context, but remains a challenge owing to non-standardized and selective methods relaying on physical identification of species by visual surveys and counting of individuals. However, traditional monitoring techniques remain problematic due to difficulties associated with correct identification of cryptic species or juvenile life stages, These traditional methods depend on practical and taxonomic expertise, which is steadily declining. In an attempt to come up with new objective solutions for monitoring biodiversity, recent and ongoing studies in Qatari waters, uses and further develops novel environmental DNA (eDNA) methods for Monitoring aquatic biodiversity in the Gulf and elsewhere.
Previous studies have shown that diversity of rare and threatened European freshwater animals - representing amphibians, fish, mammals, insects and crustaceans - can be detected and quantified based on environmental DNA (eDNA) obtained directly from small water samples of lakes, ponds and streams (Thomsen et al. 2012a).
Subsequently, for the first time, we investigated the potential of using metabarcoding of eDNA obtained directly from seawater samples to account for marine fish and mammal biodiversity. We show that such marine eDNA can account for fish biodiversity using high-throughput sequencing. Promisingly, eDNA covered the fish diversity better than any of 9 methods, conventionally used in marine fish surveys. Additionally, we show that even short fish eDNA sequences in seawater degrades beyond detectable levels within days, in accordance with results obtained from freshwater eDNA (Thomsen et al. 2012b). Controlled mesocosm experiments have also shown that eDNA becomes undetectable within 2 weeks after removal of animals, indicating that eDNA traces are near contemporary with species presence. Our findings underpin the ubiquitous nature of eDNA traces in the environment and support the use of eDNA as a tool for monitoring rare, threatened and economically important species across a wide range of taxonomic groups.
A particularly interesting study focuses on the large whale shark aggregation at the Al Shaheen Oil Field, located in the offshore area called “Block 5”, in the NE of the Exclusive Economic Zone (EEZ) of Qatar. Maersk Oil Qatar is currently operating several oil and gas production platforms within this field, and also take active part in a large whale shark research project studying many aspect about the aggregation. Quantitative PCR (qPCR) and high-throughput sequencing of sea water from the area have successfully been employed to gain new information about the occurrence, abundance and biology of the aggregation. More specifically, data from 2013 and 2014 showed that whale shark eDNA concentrations follows visual observations of abundance, and that degradation of eDNA occur rapidly, supporting that the obtained genetic material is of local origin. Our findings confirm that seawater samples can contain key information on populations of oceanic species, and demonstrate a general potential of eDNA for studying populations of marine organisms.
Although further studies are needed to validate the eDNA approach under varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of aquatic biodiversity and resources in the Gulf.
References
Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012a). Monitoring Endangered Freshwater Biodiversity using Environmental DNA. Molecular Ecology 21, 2565–2573.
Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012b). Detection of a Diverse Marine Fish Fauna using Environmental DNA from Seawater Samples. PLOS ONE 7(8), e41732.
-
-
-
Establishing Qatar World Leadership in Date Palm ‘Omics Research
Authors: Joel A Malek and Karsten SuhreThe date palm tree produces a highly nutrition fruit in harsh environments found in a region stretching from North Africa, through the Arabian Gulf to India. The ability to withstand high temperatures, high salinity water and other environmental challenges makes the date palm an excellent candidate for food security in this region of the world. In 2011 we published the first date palm genome sequence in Nature Biotechnology (Al-Dous et al. 2011). Based on this ground-breaking work we proposed to establish both the infrastructure and research to allow Qatar to lead in the biotechnological development of the date palm tree. This proposal was recently supported by QNRF who awarded the first exceptional award for date palm research.
Here we show our findings from both the research and infrastructure development. This includes the establishment of the first date palm biobank, genome sequencing of multiple date palm trees from across the world, identification of candidate genes for gender determination, fruit length and fruit color among others. The results of the research will provide opportunities for development and commercialization in Qatar and the rest of the region as emphasis is put on changing environments and the need for food security. To establish the infrastructure for this research we have utilized expertise and pipelines developed in Qatar to analyze multiple date palm ‘omics data. Our approach is based on the combined expertise in next-generation DNA sequencing, Single Molecule Sequencing, Metabolomics, Bioinformatics and Phenotype analysis. These are then combined with expertise in local date palm orchards to look at the possibility of translating findings to the farmers.
Our major outcome is the date palm genome and its metabolic characterization as its read out. To obtain the most detailed results we created the first date palm biobank with over 250 date fruit types collected from across date palm cultivating countries. Phenotype and genotype information has been collected on these fruit. Candidate markers related to date palm gender, flowering time, fruit color and size have been identified and are currently being developed further. To translate our research to agricultural application we have worked with Ministry of Environments Biotechnology Centre to understand how various fertilizers affect the microbiomes surrounding date palm trees and ultimately their fruit yield. Additional ongoing projects with Qatar University seek to identify the optimal date palm male pollinators to improve date palm fruit yield.
To understand the relationship of the date palm to Qatars Environmental sustainability we have conducted a survey of date palm genetic diversity across the municipalities of Qatar. Multiple leaf samples were collected from each municipality and genotyping was conducted on all DNA including date palm and any potential pathogens. This study has identified the main types of trees growing across Qatar as well as the main associated potential fungal and microbial pathogens.
The project has resulted in multiple intellectual property disclosures and partners for the commercialization of these are actively being pursued.
This work was conducted by the Date Palm EP group and funded by a grant from Qatar Foundation National Research Priorities, NPRPX-014-4-001 Link: http://dactylifera.org
-
-
-
Challenges and Prospects for Solar Thermochemical Reactor Engineering for Renewable Resource Utilization and Poly-Generation
More LessIn the present work we examine how recent progress at our collaborating laboratories, over various solar thermochemical technologies, can be brought to bear on the advancement of renewable resource utilization in Qatar.
Specific examples of such technologies include solar water splitting for H2 production, solar CO2 splitting thermochemical energy storage in reduced metal oxides, solar cracking of CH4 for production of carbon nanoparticles and hydrogen, and production of metal nanoparticles to be employed as renewable fuel. Where feasible the potential of using locally sourced materials is stressed and particular examples are given (e.g. the use of Qatar's CaCO3). Enabling technologies over all scales (from the lab to the demonstration scale) include advanced instrumentation and testing platforms (e.g, solar simulators, solar furnaces, etc). Reactor concepts and system designs are formulated and analyzed and promising designs from the user's perspective are identified for advancing to the next level. Here we describe results and future directions from three such examples.
A low energy, zero-effluent system for clean water production, employing a concentrated solar thermal aquatic stream processing module is described. The projected specific electric energy consumption of the system does not exceed 1 kWh/m3, which in fact can be largely produced by the system itself. The system can exhibit an unprecedented (>99%) clean water recovery from any aquatic stream (seawater, brines, wastewater). At the same time the salt/solids content of the aquatic stream is separated in dry-form, thus being transformed from a waste-to-be-managed into a raw material ready for further commercial exploitation. The system is based on a modular design hence it is applicable over a range of scales, from standalone applications to large scale industrial water plants as well as an add-on to existing large scale producers and/or users of water, for further recovery of water and residual solids (salts, valuable metals from brine/wastewater effluents).
Production of hydrogen can be achieved via photo- and electro-chemical water splitting processes. In order for such processes to be feasible, they employ sacrificial electron donors which also bind oxygen molecule. Then, they have to be regenerated, via thermochemical reactions, and also release the oxygen. So the whole process operates in a cyclic mode, thus called water-splitting cycle. The use of solar energy for the realization of the thermochemical steps increases the overall solar-to-hydrogen efficiency. The Hybrid Sulfur Ammonia cycle, described here, uses ammonium sulfate as the sacrificial donor and a mixture of alkali-metal sulfates and pyrosulfates, which help to recover oxygen at lower temperatures and higher efficiency. We present the of thermal analysis experiments conducted for the calculation of the respective thermodynamic properties (heat capacity and enthalpy). In addition, with the use of advanced thermodynamic tools (FacTSAGE etc), and experimental thermal analysis, we completed the thermodynamic analysis, and selected the reaction temperatures in a range from 350°C to 900°C.
The crucial drawback of solar energy is its intermittent character. At the same time, pollution caused by the release of CO2, mainly in power plants and cement production, results in a series of problems such as global warming and poor air quality. Thermal Energy Storage (TES) can provide an escape route for both the aforementioned problems. TES can be used in order to store heat during periods of high solar irradiation and release it during the night or periods of low activity. Carbonate systems, such as calcite and dolomite, can be utilized for TES. In this study we focus on the reversible calcination/carbonation cycle of (CaMg)CO3, because it is a very strong candidate as a high efficiency thermochemical material. Its energy density is the highest among other materials. It can be found in vast quantities in Qatar, according to its geological formation, thus can be easily used as low cost/high added value material. Furthermore, it is a non-toxic and safe material with easy separation of the phases. In addition, the cycle involves CO2 capture during the discharge stage. This ends up in both energy release and greenhouse gases elimination. So far, we have characterized thermally, chemically and morphologically local raw surface carbonates. Results show that dolomitic powder, (CaMg)CO3 from Northern Qatar and subsurface rocks have an average capacity of 6 mmol CO2/g, but sintering deactivates material significantly after 20 cycles. Currently, we are designing a potential TES process coupled to cement production. In parallel, we are investigating experimentally the available methods to enhance the capacity of the raw material and improve its stability.
Present research contributes towards the solution of the Global Challenges that our societies face today, and in particular it provides access to safe and clean water and energy. These can be achieved with improved performance, energy efficiency and ease of usability.
-
-
-
Investigation of Spatiotemporal Variability of Microplastics in Qatar's Coastal Environment
There has been a tremendous proliferation in plastic production in the last five decades due to its low cost and versatile applications. Plastic debris dominates the marine litter globally and has been found in the most pristine environment including the abysmal region of the world ocean. Studies show that over 8 million tons of plastics are dumped in the ocean annually (Gregory, 2009). Plastics are persistent in the environment and take several decades to degrade especially in the ocean. Large plastic debris can heavily damage the coral reefs and may cause entanglement, choking, blockage of digestive tracts when ingested by turtles, whales, sharks etc, causing several thousand deaths annually among these organisms. Microplastics are tiny plastic particles that seldom originate from fragmentation of large plastic debris or are produced to serve some specific purposes. Microplastics pose greater threats as they can be mistaken for food by filter-feeders and planktivorous fish, and can also adsorb large quantities of recalcitrant organic pollutants (OPs). Impacts on marine biota may include endocrine disruption, carcinogenesis, and sexual disruption, etc. These impacts may not always be obvious but OPs surely affect marine biota once they enter the food web even at low concentrations (Mato et al., 2001) which biomagnify up the marine food web, hence, explains the need for their investigation.
In this study, the spatial and temporal distribution of microplastics was investigated for the first time in Qatar; both in sediments and seawater. Eight beaches across Qatar and four sea surface stations were surveyed between the months of December 2014 and March 2015. The objectives of this study were:
1. To analyze the spatial and temporal variability of microplastics in seawater and sediments, in sea surface and intertidal sandy beach environments, respectively.
2. To characterize the isolated microplastics based on size, shape, colour, and type of polymer.
3. To describe macroplastics collected from beaches based on polymer type and quantify the concentration of OPs adsorbed on their surfaces.
4. To investigate the rate of adsorption of OPs on virgin plastic pellets in a field experiment.
A general overview of the followed methodologies is given in Appendix 1. In the first phase of this study, the spatial and temporal distribution of microplastics was investigated in seawater and sediments respectively. Four sea surface stations (Appendix 2) and eight beaches (Appendix 3) across Qatar were surveyed between the months of December 2014 and March 2015.
Seawater was sampled respectively with a surface neuston net (300 μm mesh size) towed off the side of the speedboat in undisturbed water for 5 minutes at 1.5 knots (Doyle et al., 2011). Next, collected materials in the cod were transferred into labeled, acid-treated insulated glass containers to prevent contamination. Concentrations of microplastics were given in square meters as sampling was done in two-dimensional air-sea interface. Physicochemical parameters (temperature, salinity, pH and dissolved oxygen) were measured in-situ and recorded at each sampling site.
Additionally, eight coastal stations (Al Dhakhira, Ras-Laffan, The Pearl, Doha Bay, Al Ruwais, Dukhan, Umm Bab, and Mesaieed) were chosen on the basis of their accessibility and being evenly distributed along Qatar coastline.
For each sampling, sediments from the top 2 cm were collected at the most recent high tidal mark on shore from a square area (0.5 × 0.5 m) along the shore line. Three replicate quadrats (5 meters apart) were sampled in each beach. The samples were homogenized and transferred into acid-treated glass containers to prevent contamination and transported to the laboratory for analyses.
Microplastics (Appendix 4) were discovered in all samples and their abundance varied both in intertidal sandy beaches and sea surface. Two-factor ANOVA revealed that the spatial variability of microplastics in sea surface stations was statistically significant however, there was no observable temporal variability (Appendix 5). The average concentration of microplastics in all 8 beaches was not significantly different (Appendix 6). Chemical analysis revealed the occurrence of OPs with endocrine effects on all obtained macroplastics, and concentration of pollutants was consistent in all sites. Large piece-to-piece variations of contamination up to two orders of magnitude were discovered within sites (2 to 1,005 ng/g), although there was no significant difference in contaminant concentration among all sites for PCBs and PAHs respectively.
Since plastic debris are hydrophobic and easily adsorb organic pollutants the second phase of this study was targeted at investigating the concentration of PCBs and PAHs adsorbed on macroplastics in situ. Field adsorption/desorption experiment was performed to investigate how pellets of different polymers and contaminated with POPs behave when placed in ambient seawater. Pellets were deployed and later retrieved at 48h, 96 h, 192 h, and 312 h respectively. The pellets were analyzed for PCBs and PAHs and undeployed pellets were also analyzed at time 0. Adsorbed PCBs and PAHs concentration showed a steady decrease with time, suggesting that contaminated pellets ending in the marine environment release their adsorbed contaminants in less contaminated seawaters revealing a complex OPs dynamic between plastics an seawater as a function of differential concentrations of pollutants and environmental conditions.
This study is the first of its kind in Qatar and seemingly in the entire Arabian Gulf region. Marine pollution is a growing concern in Qatar coastal and offshore environment. Marine debris is of major concern due to the fact that plastic can take several decades to be fully degraded. Results from this study indicate that microplastics are ubiquitous in Qatar coastal environment and the fact that they are easily mistaken for food and ingested by zooplankton and smaller fishes makes them a serious threat to the marine food web. Hence, regular monitoring of the occurrence of microplastics and studying how they may affect the foodweb and potential contaminations of exploited (seafood) species are needed to give policy makers an insight of the sources of the debris and proffer suggestions on how to tackle the menace using a holistic approach.
References
Doyle, M.J., Watson, W., Bowlin, N.M., Sheavly, S.B., 2011. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Marine Environmental Research 71, 41–52.
Gregory, M.R., 2009. Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 2013–2025.
Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C. and Kaminuma, T. 2001. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology 35 (2), 318–324.
-
-
-
Evolution of Seawater Desalination and Petroleum Refinery Wastewater Treatment in a Microbial Desalination Cell
Authors: Ibrahim M Abu Reesh, Suraj Sevda and Zhen HePetroleum refining, not only consumes large quantities of water but also generates large quantities of wastewater. Large quantities of petroleum refinery wastewater are generated worldwide, approximately 3.5–5 m3 of wastewater generated per ton of crude oil processed. This wastewater is considered as a major source of environmental pollution. Various chemical and biologically based technologies have been developed for the treatment of petroleum refinery wastewater such as reverse osmosis, membrane filtration, electrocoagulation, anaerobic tank, anaerobic baffled reactor, aerated filter and bio-contact oxidation. In the last decade, biological treatment methods of petroleum refinery wastewater were developed because of the high cost of chemical treatment methods and these methods are also more environmental friendly.
In this study, we demonstrate for the first time that it is possible to remove salt from saltwater and generate electricity while using petroleum refinery wastewater as an anodic substrate in the three chamber microbial desalination cell (MDC). MDC insinuates a new method for treating petroleum refinery wastewater and concurrently salt removal from seawater with bioelectricity generation. MDC was developed from microbial fuel cell (MFCs) concept. In this device, desalination and wastewater treatment are conducted in one system. MDC has an enormous potential as a low-cost desalination process with wastewater treatment and other benefits. MDC is a new technique in which saltwater can be desalinated without using any external energy source. The exoelectrogenic-bacteria are used in MDC reactor to oxidize biodegradable substrate in the anodic chamber and transfer the produced electrons to the anode electrode.
In this study, petroleum refinery wastewater was treated in MDC using three different initial salt concentrations of 5 g/l, 20 g/L and real seawater in desalination chamber along with two separate catholyte (phosphate buffer solution and acidified water). All the three chamber MDC operations were carried out in batch mode. The maximum % COD removals of 71 and 64 were obtained using initial salt concentration of 20 g/L with MDC operated with acidified and phosphate buffer solution as catholyte respectively. The maximum desalination efficiency of 19.9% and 19.1 % were obtained in MDC operated with real seawater using PBS and acidified water as catholyte respectively. The scanning electron microscope images investigation confirmed the presence of microbial biofilm on the anode electrode and anion exchange membrane surface. The MDC performed better with acidified water compared to PBS as catholyte. The above obtained results demonstrated the feasibility of using MDC technologies to generate bioelectricity, seawater desalination and simultaneously treat complex petroleum refinery wastewater, although further studies are required to scale up and optimize the process. The MDCs are emerged as a self-energy driven device for wastewater treatment and seawater desalination at the lab scale. But still MDCs needs further research before it can be implemented at large scale. Acknowledgements: This work was made possible by NPRP grant # 6-289-2-125 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
-
-
-
Improving Livability in Doha: The Role of Neighborhood Microclimates, Land Use, and Materials in Rapidly Urbanizing Regions
Recent evidence suggests that some densely populated areas of the world will be uninhabitable in the coming century due to extreme climate events (e.g. heat waves, atmospheric pollution, and drought) and due to shifts in microclimate and breathable air, which are directly related to livability. With estimates that over 75% of the global population will be living in cities by mid-century, scholars, practitioners, and government officials are asking what cities can do to address the pressing social and environmental challenges that emerge from climate change. They are also seeking to learn how this knowledge may inform policy decisions regarding physical, social, and economic planning to ensure an inviting quality of life and livability in these future places. We believe that we have an unprecedented opportunity to use our knowledge, technology, and social capacities to reduce the likelihood of producing a catastrophic future.
This study compares the livability of two seemingly unlikely locations – Doha, Qatar, a capital city on the Arabian Gulf, and Portland, Oregon, an important American city in the Pacific Northwest. These cities are growing at different rates, have diverse cultural histories and varied development patterns, yet are attempting to improve urban livability for citizens in each place and its surrounding region. Through an in-depth examination of the physical changes that have occurred in both places and their corresponding urban climate conditions, especially thermal comfort, we describe the similarities and differences that help to define the challenges facing the management of each. We look specifically at two important empirically-derived measurements of livability: air quality and urban heat island effect. By focusing on these environmental stressors in each place, we are able to evaluate the extent to which different growth and policy drivers have impacted the ability for people to enjoy a desirable quality of life in both cities – different, but appropriate to each. We include as part of our approach a conceptual framework, which describes the coupling of environmental and human conditions for which changes in development patterns have direct implications on the livability of each location.
As a result of our analysis, we offer insights about actions that show promise of managing future livability in each city and focus primarily on the ability to manipulate selected aspects of urban form – those characteristics of massing, surface materials, and tree cover that can change the air pollution and urban heat stress experience in each place. We focus specifically on landscape and site scale modifications that show promise of improving air quality and/or reducing urban heat as a stressor. Since cities around the world are looking to nature to provide benefits to city inhabitants, we emphasize the salutary role of green infrastructure.
While much is still to be discovered regarding the capacity for cities and their managers to adapt to the emerging challenges of climate change, population growth, and conventional development patterns, yet without sustained and promising actions, the cities that are home to the majority of people today may likely become either obsolete in the coming centuries or present less than desirable living conditions for their future residents.
We recognize that while all cities are unique reflections of their unique biophysical, microclimatic, social, cultural, and natural contexts, they also share many similar circumstances and conditions – the identification of which may help policy makers address climate change more effectively. Our conclusions also support the fact that seemingly diverse cities do, in fact, contain similarities in terms of the local, environmental, and urban design conditions that determine air quality and contribute to urban heat island effect.
Grant Acknowledgement: This paper was made possible by National Priority Research Program grant #NPRP 5-074-5–015 from the Qatar National Research Fund (a member of Qatar Foundation).
Keywords: Climate change, microclimate, air quality, urban heat island, thermal comfort, livability
-
-
-
Economic Analysis of a Stand-Alone Reverse Osmosis Desalination Unit Powered by Photovoltaics for Possible Application in the North West Coast of Egypt
More LessThe availability of fresh water and energy is the key factor of the development of many countries particularly those of over-populated arid areas. Potable water supply shortage and recent technological development have led to wider application of conventional, and yet advanced saline/brackish water desalination plants. Today, desalination methods require large amounts of energy, which is costly both in environmental pollution and in money terms. This study defines the main economic parameters used in estimation of desalination costs and limitation of the stand-alone, small size SWRO plants powered by photovoltaic at the North West cost of Egypt. Moreover, techno-economic study is made to estimate the actual cost of m3/fresh water production on real field measurements. All cost estimations are based on the prevailing prices during 2012–2013. The average unit cost of desalted water with the desalination unit powered by photovoltaic battery is 9.3–5.6 LE/m3, which is very high, but when using the unit with battery, the cost is reduced to be between 2.3–1.7 LE/m3 by increase working hours to 24 hours. Economical strategies should be developed for more reduction in cost taking into account all phases from site selection and design to operation and maintenance and most importantly increasing the local manufacturing. Keywords: Production cost, Economic analysis, Stand-Alone, Reverse osmosis, photo voltaic, Desalination, Egypt.
-
-
-
Nowcasting of Solar Irradiance with Autorregressive Models in Qatar
More LessSolar radiation in near-real time is of high importance for the integration of PV electricity into the Grid and operation of solar plants. Solar radiation is characterized by a high temporal and spatial variability mainly due to the effect of clouds. In the case of solar energy plants with storage energy system and CSP plants in general, its management and operation need reliable predictions of solar irradiance in the very short term or nowcasting. Solar forecasts are also needed in on-grid applications of solar energy where sudden changes in solar irradiance can trigger unacceptable voltage deviation, if not properly managed. Solar radiation forecasting beyond six hours and up to several days ahead is based on Numerical Weather Prediction (NWP) models for supplying hourly or daily forecasted values. However, statistical and machine learning techniques have shown to be effective for solar forecasting at higher-resolution timescales (e.g. minutes). The aim of this work is to show the effectiveness of autoregressive models for the prediction of solar radiation in the short term (nowcasting) in the Middle East. The temporal steps of the predictions are 1, 5 and 10 minutes, and the temporal horizon is 15 steps ahead, so that the ensuing predictions includes 15, 45 and 150 minute ahead forecasts, respectively. We describe the models and show validation results for one year of ground measured global horizontal irradiance in Doha (Qatar).
-
-
-
Catalytic Decomposition of Methane for Energy Efficient Use of Natural Gas
Authors: Mike S. Scurrell, A K Venugopal and K SalipiraThe catalytic decomposition of methane (CDM) on suitable surfaces offers the prospect for lower or zero-carbon routes to energy using natural gas or methane derived via biomass options. The carbon from the decomposition could be stored (buried), used for specific applications or perhaps converted to electricity using carbon fuel cells, according to which the overall process is near-zero or low carbon dioxide producing in character. A large volume of work now describes the action of supported nickel in the CDM reaction. However, the basic ground rules governing activity, longevity (closely related to carbon yield) and carbon morphology as well as issues around practical reactor systems for the sustained catalytic action of solid catalysts remain to be developed. In nickel/titania systems the carbon type and yield are dependent on nickel loading levels, with lower Ni loadings favouring higher carbon yields per unit of Ni. The carbon yield per unit mass of catalyst in nickel-titania systems is largely independent of Ni loading. Carbon yields are greatly influenced by the nature of the catalytic solid. Addition of Cu or La can lead to unusually high carbon yields in excess of 2000 g/gNi, some of the highest ever reported. The nature of zeolite morphology in Cu-Ni systems also greatly influences the carbon yield and examples of this behaviour will be presented and discussed. Considerations of how to regenerate CDM catalysts, or slowing their deactivation in the first place are demanded if sustained practical CDM is to be achieved and some ideas on the issue may be developed from experiences with other methane decomposition systems, including non-catalytic approaches that have been pursued using concentrated solar energy, for example.
-
-
-
Using Electrospinning Technique for Preparation of Cobalt Hydroxide Nanoparticles
Authors: Mohammad Madani and Abdelmagid Salem HamoudaCobalt hydroxide or cobaltous hydroxide or cobaltous hydrate, has attracted increasing attention in recent years because of its novel electric and catalytic properties and important technological applications, for examples in advanced batteries, supercapacitors, solar cells, electrochromics, as an oil additive, it can improve tribological properties [1,2], etc. Cobalt hydroxide nanoparticles were prepared via in-situ electrospinning. Thus, electrospinning of polyethylene oxide solution with different cobalt nitrate concentrations were carried out in gaseous ammonia atmosphere. The reaction of cobalt nitrate with ammonia produces cobalt hydroxide. The reaction occurs during fiber formation. Transmission Electron Microscopy (TEM) showed that cobalt hydroxide Co(OH)2 nanoparticles were formed on the produced nanofibers of 100-600 nm in diameter. The existence of the formed Co(OH)2 was also proven by X-ray Diffraction (XRD) analysis and it showed that the Co(OH)2 nanoparticles were produced. Thermogravimetric Analysis (TGA) results also confirmed the presence of Co(OH)2 within the fibers. Experimental Section Co(NO3)2.6H2O (supplied by Merck Chemical Co.) with different concentrations was dissolved in 100 mL distilled water to produced Co+2 solution. Then, the following seven experiments (Exp. G1, G2, G3, G4, G5 (collectively called G-series in this article), P, and N) were carried out. G-series: 4.0 g of polyethylene oxide (with weight average molecular weight of 600,000 g/mol and supplied by Acros Organics Co.) was added to 100 mL of above mentioned cobalt nitrate solution with different concentrations (given in Table I) and left for two nights to obtain a homogenous PEO solution having cobalt ions. The polymer solution was put into a hypodermic syringe. A syringe pump (Stoelting Co., USA) was used to feed the polymer solution into a metallic needle with an inner diameter of 0.7 mm. A grounded aluminum foil as collector was placed at a fixed distance of 18 cm from the needle. The metallic needle and the collector were enclosed in a polymethyl metacrylate box (40′50′60 cm). The feed rate of the syringe pump was fixed at 0.7 mL/h. A positive potential of 18 kV was then applied to the polymer solution using a high-voltage power supplier (HV35P series, Fnm Co., IR) with a maximum voltage of 35 kV. During electrospinning, gaseous ammonia (from a cylinder purchased from Merck Chemical) was purged into the box with a rate of 10 L/min. Electrospun nanofibers were collected on the surface of the grounded aluminum foil. Results and Discussion A comparison of the appearance (color change) of the mats obtained from G-series with that of the P fiber mat suggested that the cobalt ions in the jet traveling the distance between the needle and the collector could precipitate in the gaseous ammonia atmosphere to produce cobalt hydroxide. In other words, in this process, one reaction occurs during fiber formation: the reaction of Co+2 ions with NH3 which produces Co(OH)2 nanoparticles on the nanofibers. Cobalt (II) hydroxide is obtained as a precipitate when an alkaline hydroxide is added to an aqueous solution of cobalt (II) salt. Since the reaction of nanoparticle formations occurs during fiber formation in electrospinning process, the precipitated nanoparticles have special morphology and crystalline structures (due to the applied voltage, elongation, etc.). Figure 1 displays the TEM images of fibers obtained from Exp. G1 (electrospinning of polyethylene oxide solution having 2.5% Co+2 based on PEO, in ammonia atmosphere) and as it shows, dark spots of Co(OH)2 are heterogeneously dispersed on the fibers. These TEM images suggest that in the Exp. G1, Co(OH)2 nanoparticles were heterogeneously synthesized on fibers through the reaction of cobalt ions with NH3. Fig.1 TEM images of nanofibers obtained from Exp. G1. Ref. Zhang, L.; Dutta, A.K.; Jarero, G.; Stroeve, P. Nucleation and growth of cobalt hydroxide crystallites in organized polymeric multilayers. Langmuir, 2000, 16, 7095. Patnaik, P.; Handbook of Inorganic Chemicals, McGraw-Hili, New York, 2002.
-
-
-
Implementation of Genomics Tools for Genetic Improvement of Date Palm to Black Scorch Disease
Authors: Osman Radwan and Fatima A. Al-NaemiThe ability of date palm tree to survive under adverse abiotic conditions renders it as an important fruit tree growing in hot and dry regions. Nevertheless, the optimal conditions for date palm growth and production are also suitable for fungal growth leading to major diseases such as black scorch. The aim of this work was to develop a genetic control of date palm to Thielaviopsis punctulata, the causal agent of black scorch, through understanding molecular interactions between the plant host and the pathogen. Genomics and bioinformatics tools were used to sequence, assembly and annotate the whole genome of the pathogen and to decipher the molecular mechanisms of date palm resistance to the pathogen. The whole fungal genome was assembled and functionally annotated with an estimated size of 28.1 Mb containing 5,480 predicted genes. Some of the annotated genes belong to toxin-related genes such as necrosis inducing protein (NPP1) and Cerato-platanin, reflecting a potential functional role of fungal toxins in inducing disease symptoms. On the host side, real-time PCR and RNA-Seq approaches were used to quantify the fungal infection and profile the genome expression of date palm in response to the pathogen infection in two cultivars at 1, 2, 3 and 4 day post infection (dpi). Results from real-time PCR showed that the fungal infection started early at one dpi and the highest level of infection was detected at three dpi for both cultivars. Results also showed that Khalas cultivar is less infected by the pathogen compare to Kinzy cultivar reflecting a degree of resistance in Khalas cultivar. Data from RNA-Seq is being analyzed to identify regulatory genes involved in resistance to black scorch disease. Information from the current study will lead to further understanding of the molecular interactions between T. punctulata and date palm, assisting in deriving effective genetic control strategies for black scorch disease.
-
-
-
The Fabrication of Unclassified Photodetctors in Iraq
More LessIn this review the results of many unclassified homemade optical detectors developed in the last two decades at the research and patents bases in Iraq is demonstrated. These detectors include: CdS doped with Cu (CdS:Cu); CdSe; CdSe:Cu; PbS; and PbSe. They cover a wide range of the electromagnetic spectrum ranging from the solar spectrum to the infrared (0.4-10.6 μm). It is found that for the CdS and CdSe type of the detectors, the wavelength tuning are due to the localized energy states of copper atoms inside the valence and conduction band of the CdS and CdSe. The tuning of these photoconductive detectors is compared with the recent quantum well (QWIR) and quantum dots (QDIR) infrared detectors. The major significance of the developed detectors is their synthesis simplicity and very low cost in comparison with that of the QWIR and the QDIR detectors. The CdS:Cu which covers the spectral response range (0.4-0.7 μm) is prepared by using a chemical spray pyrolysis. The CdSe:Cu is found to cover a wider spectral response than that of the CdS:Cu (0.4-10.6 μm). This detector is prepared by vacuum evaporation of CdSe films on glass substrate followed by vacuum annealing under an argon atmosphere for doping of copper. A high gain value of 2.37-107 is measured and explained by the competition of the copper capture cross section. Such competition produces further carriers due to the photoexcitation of copper atoms in the localized states inside the band gap. For the CdSe detector, it is found that vacuum annealing improves the detector characteristics such as the gain. Moreover it is found that the gain increases from 4.3 to 12 when the annealing temperature was increased from 150 to 350°C respectively. However, the doping of CdSe with copper leads to a huge increase of the gain coefficient to about 9-103. On the other hand the PbxS1-x alloys (spectral response 1-2.8 μm) were prepared from pure lead and sulfer powders with two x contents (0.54, 0.55). They were loaded into a clean and baked quartz tube. It is found that the quantum efficiency, responsivity and detectivity of the prepared detector are improved with the little increase of the Pb content from 0.54 to 0.55. As for the PbSe film detector (response range 2-5 μm), the responsivity and quantum efficiency are found to increase by lowering the detector temperature to 180K. It is focused on a brief review of the figure of merits of the mentioned detectors. Moreover these detectors are used for the detection of various laser wavelengths in a pulsed mode of operation and can be used in military areas, particularly, for the detection of thermal targets.
-
-
-
Environment Degradation and Economic Growth in the Qatar Economy: Evidence from a Markov Switching Equilibrium Correction Model
More LessAir pollution, global greenhouse gases (GHG), water pollution and water resources degradation are among the most serious environmental concerns that encounter the Qatar country. In nowadays, it is commonly known that the effects of environment degradation exceed its direct negative impacts on climate changes to cover its impacts on Human health, nation livelihood and cultural integrity. So, we advocate that understanding and determining factors explaining environmental degradation remain an important question of research. Moreover, by determining factors that explain environment degradation, policymakers, researchers and international institutions can help on recommending the adequate economic policies that can improve the environment quality and the live standing of inhabitants. In the empirical literature, the Environmental Kuznets Curve (EKC) is the most powerful tool used to investigate the relationship between environment degradation and some macroeconomics and financial variables. Following the EKC hypothesis, the relationship between economic growth and environment degradation is inverted-U shaped. From the economic perspective, this means that initially economic growth increases environment degradation and then declines it after a threshold point of income per capita. More specifically, at initial level of economic growth, an increase in income is linked with an increase in energy consumption that raises environment degradation. After reaching a critical level of income, the spending on environment protection is increased, and hence environment degradation tend to decrease. From an econometrical or statistical perspectives, the EKC hypothesis have been firstly tested using the basic EKC equation which relies the environment degradation proxy to the real GDP and to a nonlinear term of the real GDP (the squared real GDP). If the EKC hypothesis holds then the real GDP and the squared real GDP have respectively a positive and negative signs. This EKC hypothesis has been firstly introduced by Kuznets (1955) when examining the relationship between economic growth and income inequality which shows that this relationship is inverted U-shaped. Grossman and Krueger (1995) are the first to examine this relationship between environment degradation and economic growth in their seminal paper published on the Quarterly Journal of Economics. They found that this relationship is inverted U-shaped which validates the EKC hypothesis. Empirically, until now no consensus has been reached about the true nature of the relation between real GDP and environment degradation. Evidence for the EKC hypothesis is very mixed. Overall, the results seem to depend in many factors including the specification, the pollutants and the econometrics technique used. First, empirical studies show that the results in term of positive and negative relationships as well as in term of magnitude differ significantly for the same country depend on the specification studied, linear, quadratic or cubic. Moreover, the inclusion of other factors in the right hand of the regression such as urbanization, trade openness, financial development and political stability have a significant impact on the magnitude of the income per capita variables coefficients. Second, the results differ significantly following the environment degradation proxy used. For instance, Horvath (1997) and Holtz-Eakin and Selden (1995) suggest that the use of global pollutants leads to continuously rise the levels of environment degradation or to a high levels of income per capita turning point, see also Esteve and Tamarit (2011). Third, the results also seem to depend in the econometric approach employed. In this paper, we investigate the case of the Qatar economy for several reasons. First, Qatar 2030 vision has given a high importance to questions related to air pollution, climate change and their impacts on economic sustainability. Second, the rapid increase of economic growth of the Qatar economy in the last two decades has been accompanied with an increase in energy consumption, urbanization and international trade. These factors are among the most important factors largely used in theoretical and empirical literature to explain environment degradation. Third, following the world health organization (WHO), local air pollution levels in Qatar has frequently exceeded recommended levels and are more time higher than the international standards. In fact, compared to the WHO's standards for PM10 for the 24-hour average and for the annual average concentration of 50 ug/m3 and 20 ug/m3 the Qatar's national air quality standards are far from these values. For instance, the values for PM10 is around 150 ug/m3 for 24 hours average concentration and to 50 ug/m3 for the annual average concentration. The data set used in this paper consists on macroeconomics and financial data, including CO2 emissions, ecological foot print, real GDP per capita, energy use, urbanization, financial development and openness trade, to investigate the EKC hypothesis for the Qatar economy. All the dataset except the ecological foot print variable are collected from the world Bank's development indicators (WDI). The ecological footprint data is obtained from the National Footprint Accounts (NFAs) of the Global Footprint Network. This variable is employed as second proxy of environment quality measures. This data set used is a quarterly data and covers the period 1975Q1 to 2007Q4 for variables used for ecological footprint equation and covers the periods 1980Q1 to 2010Q4 for the CO2 emissions equations variables. This paper contributes to the empirical literature of the EKC hypothesis in many ways. First, to our knowledge this paper is the first to consider the case of the Qatar economy as a single country to test the EKC hypothesis as well as the different directions of causality between variables. Second, in addition to the CO2 emissions largely employed in the empirical literature, in this paper we employ also the ecological footprint as a new proxy of environmental degradation. Third, we use recent development of cointegration approach with structural breaks which is also rarely used for the case of EKC hypothesis. As tests of cointegration with shifts in the cointegration vector, we use the Gregory and Hansen (1996), Hatemi-J (2008) and to investigate the causal relationship between all variables using standard Granger causality tests. Fourth, to our knowledge this paper is the first study that uses Markov Switching Equilibrium Correction Model with shifts in both the intercept and the income per capita coefficient for the long run relationship between environment degradation and its key determinants. The empirical findings of this paper are useful for Qatari policymakers and especially for the ministry of environment of the Qatar government. Moreover, economic implications and economic policy are proposed and discussed. [1] P.O.Box: 2713-Doha-Qatar. Email: [email protected]. Office: (+974) 4403-7764(+974) 4403-7764, Fax: (+974) 4403-5081. CallSend SMS Call from mobile Add to Skype You'll need Skype Credit Free via Skype
-
-
-
Transformer-less Grid-Connected High-Voltage Marx Pulse Generator with Unity Power Factor for Domestic Drinking Water Disinfection
Authors: Ahmed Abbas Elserougi, Shehab Ahmed and Ahmed MassoudQatar has no rivers, thus the main natural water resource in Qatar is the groundwater table. The average groundwater recharge from rainfall is approximately 55.9 million m3/year, in addition to 2.2 million m3/year inflow of groundwater from Saudi Arabia, i.e. the total average renewable groundwater resource is 58.1 million m3/year for the period 1972-2005. Desalinated sea water and treated sewage are non-conventional water sources in Qatar. The quantities of produced and treated wastewater in the country were 55 and 53 million m3 in 2005 respectively. In 2005, a total water withdrawal of 444 million m3 was estimated, which are divided unequally into agricultural, municipal and industrial purposes. The Permanent Water Resources Committee (PWRC) was established in April 2004 to secure water resources for various uses for the benefit of Qatar. Qatar has carried out a number of studies, and established committees for the unification of integrated water resources management as follows: Increasing natural recharge by drilling wells with a special design. Development of water monitoring and irrigation scheduling. Artificial recharge of groundwater. Development of deep aquifers. Increasing treatment and reuse of waste-water: The amount of treated sewage increased from 46 million m3 in 2004 to 58 million m3 in 2006. All of the above mentioned facts clarify the importance of securing water (quality and quantity) for the state of Qatar. Many disease-causing germs may be present in water supplies. Sixty percent of all persons living in developing countries live without an adequate supply of drinking water where unsafe water is a major cause of infant mortality in these countries. Table 1 lists some of the germs that inhabit water and which can be harmful to humans. Table 1: Water inhabiting germs Germs Minimum dose for infection Survival time in water, days Escherichia coli 1,000,000 4-16 Vibrio cholera 3 7-32 Campylobacter jejuni 500 16-49 Salmonella typhi 3 4-35 Hapatitis Type A 1 Unavailable Entamoeba coli 10 10-16 Giardia lamblia 10 16-77 Water disinfection processes kill micro-organisms in the drinking water. Disinfection can be achieved by means of chemical disinfectants such as chlorine, which is the most commonly used chemical for disinfection because of its low price. It also remains in water, which inhibits reproduction and growth of the germs. However, this process may produce toxic disinfection byproducts which are very harmful to human health. Other disinfection processes such as ozonization or ultraviolet light are expensive for drinking water disinfection. The objective of this work is to implement an electrical disinfection process for controlling germs in water, since the germ cells are destroyed when the electric field strength and pulse duration are above critical values, i.e. dielectric breakdown of the cell membrane. In electrical disinfection water treatment techniques, the high voltage sources used can be classified into: high voltage DC generators, high voltage AC generators, and high voltage pulse generators. The main disadvantage in case of continuous DC sources is the degradation effect on electrodes (electrolysis of electrodes). Although the electrolysis is less in case of AC sources, the AC field application has a dead band region. Since the application time is of the order of a few milliseconds, some bacteria may pass through the electrodes when the electric field has a low strength. On the other hand, pulsed electric field is an effective solution to guarantee killing all harmful germs and avoid electrolysis of electrodes. In PEF processing, water is passed through a small treatment chamber where it is subjected to a short pulse of very high voltage. The high voltage field created across the liquid kills microorganisms by disrupting cell membranes. By applying a high PEF with of sufficient pulse width, an electrical discharge in water will occur. The electric discharges in water can effectively create a variety of simultaneous aspects such as shock waves, ultraviolet radiation, and the formation of chemically active radicals acting on biological cells and chemical compounds dissolved in water. Generally, there are two main types of PEF treatments, namely, underwater pulsed corona discharge and pulsed arc discharge. In corona discharge, the streamer filaments do not propagate across electrodes gap, while in case of arc discharge, the streamers bridge the electrodes. As a result, the pulsed corona has lower power requirements compared to the pulsed arc discharge. In this work, underwater pulsed corona discharge will be considered. In this work, a new grid-connected high-voltage pulsed power generator is proposed to generate pulsed streamers and plasma inside water, which will react with germs and destroy them.
The proposed generator consists of:
- (i) Uncontrolled full-bridge rectifier to rectify the grid voltage,
- (ii) DC-DC Boost Converter (BC) in conjunction with Capacitor-diode voltage multipliers (CDVMs) to assure operating with unity input power factor (PFC feature) and elevate the rectified voltage to a proper voltage level,
- (iii) Conventional solid-state Marx generator, as the generated voltage from BC and CDVMs stage is used to charge the Marx generator capacitors (which are connected in parallel during the charging process),
then when it is needed to generate a pulse, these capacitors are connected in series to discharge in the load during the pulse duration. The charging and discharging cycles are repeated sequentially to generate train of repetitive pulses. The load here is the water to be purified, which electrically can be represented as a resistive load. The value of this resistance depends on the conductivity of water, i.e. depends on the amount of dissolved salts in the water. The generated high voltage pulse is applied across high voltage electrodes, and the water sample to be treated should exist between these two electrodes. The generated pulsed electric field has the ability to kill germs in the water, since by applying the pulsed electric field, an ultraviolet radiation will be produced and will destroy the structure of the germs.
The main advantages of the proposed approach can be summarized as follows:
- (i) The proposed generator has no step-up low frequency transformer which reduces the generator weight and volume and enhances the generator efficiency.
- (ii) The proposed generator can draw a sinusoidal input current at unity power factor thanks to the existence of PFC feature provided by the BC.
- (iii) Relatively low voltage semiconductor devices and capacitors will be employed which affects positively on the cost, i.e. it can be considered as a cost effective high-voltage pulse generator for domestic applications.
-